Lecture Notes on **Discrete Mathematics**. Birzeit University, Palestine, 2015

Number Theory and Proof Methods

Mustafa Jarrar

4.1 Introduction

4.2 Rational Numbers

4.3 Divisibility

1

4.4 Quotient-Remainder Theorem

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Lectures Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

1

This lecture is based on, but not limited to, chapter 3 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes on **Number Theory and Proofs**. Birzeit University, Palestine, 2015

Number Theory4.3 Divisibility

In this lecture:

,

Part 1: What is Divisibility;

Part 2: Proving Properties of Divisibility;

□ Part 3: The Unique Factorization Theorem

What is Divisibility?

• **Definition**

```
If n and d are integers and d \neq 0 then
          n is divisible by d if, and only if, n equals d times some integer.
Instead of "n is divisible by d," we can say that
            n is a multiple of d, or
            d is a factor of n, or
            d is a divisor of n, or
            d divides n.
The notation \mathbf{d} \mid \mathbf{n} is read "d divides n." Symbolically, if n and d are integers and
d \neq 0:
```

 $d \mid n \Leftrightarrow \exists \text{ an integer } k \text{ such that } n = dk.$

 \checkmark Is 21 divisible by 3? \checkmark Does 5 divide 40? ✓ Does 7 | 42? ✓ Is 7 a factor of -7? ✓ Is 32 a multiple of -16? ✓ Is 6 a factor of 54? \checkmark If k is any integer, does k divide **0**?

Mustafa Jarrar: Lecture Notes on **Number Theory and Proofs**. Birzeit University, Palestine, 2015

Number Theory4.3 Divisibility

In this lecture:

,

□ Part 1: What is Divisibility;

Part 2: Proving Properties of Divisibility;

□ Part 3: The Unique Factorization Theorem

Positive Divisor of a Positive Integer

Theorem 4.3.1 A Positive Divisor of a Positive Integer

For all integers a and b, if a and b are positive and a divides b, then $a \le b$.

Proof:

1

	b = a.k	
Thus	$1 \le k$	
	$a.1 \le k.a$	multiply both sides with a.
Thus	$a \leq k \cdot a = b$	
Thus	$a \leq b$	

Divisibility of Algebraic Expressions

If *a* and *b* are integers, is 3a + 3b divisible by 3?

3a + 3b = 3(a + b) and a + b is an integer because it is a sum of two integers.

If k and m are integers, is *l0km* divisible by 5?

1

10k m = $5 \cdot (2k \text{ m})$ and 2k m is an integer because it is a product of three integers.

Not divisible

,

For all integers *n* and *d*,
$$d \not\mid n \Leftrightarrow \frac{n}{d}$$
 is not an integer.

Prime Numbers and Divisibility

1

An alternative way to define a prime number is to say that:

an integer n > 1 is prime if, and only if, its only positive integer divisors are 1 and itself.

Transitivity of Divisibility

Theorem 4.3.3 Transitivity of Divisibility

For all integers a, b, and c, if a divides b and b divides c, then a divides c.

Proof:

1

Starting Point: Suppose *a*, *b*, and *c* are particular but arbitrarily chosen integers such that $a \mid b$ and $b \mid c$.

We need to show: a | *c*.

since $a \mid b$, b = ar for some integer r. And since $b \mid c$, c = bs for some integer s. Hence, c = bs = (ar)sBut (ar)s = a(rs) by the associative law Hence c = a(rs). As rs is an integer, then $a \mid c$.

Divisibility by a Prime

Theorem 4.3.4 Divisibility by a Prime

1

Any integer n > 1 is divisible by a prime number.

Counterexamples and Divisibility

Checking a Proposed Divisibility Property

1

Is it true or false that for all integers *a* and *b*, if $a \mid b$ and $b \mid a$ then a = b?

Counterexample: Let a = 2 and b = -2. Then $a \mid b \text{ since } 2 \mid (-2) \text{ and } b \mid a \text{ since } (-2) \mid 2$, but $a \neq b \text{ since } 2 \neq -2$. Therefore, the proposed divisibility property is false.

Mustafa Jarrar: Lecture Notes on **Number Theory and Proofs**. Birzeit University, Palestine, 2015

Number Theory4.3 Divisibility

In this lecture:

,

□ Part 1: What is Divisibility;

□ Part 2: Proving Properties of Divisibility;

Part 3: The Unique Factorization Theorem

The Unique Factorization Theorem

By a German mathematician (Carl Friedrich Gauss) in 1801.

1

The Unique Factorization Theorem

أي رقم اكبر من واحد إما ان يكون عدد أولى او حاصل ضرب أعداد أولية

Any integer greater than 1 either is prime or can be written as a product of prime numbers in a way that is unique except,

 $72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2 \cdot 3 \cdot 3 \cdot 2 \cdot 2 = 3 \cdot 2 \cdot 2 \cdot 3 \cdot 2$

Theorem 4.3.5 Unique Factorization of Integers Theorem (Fundamental Theorem of Arithmetic)

Given any integer n > 1, there exist a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k , and positive integers e_1, e_2, \ldots, e_k such that

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_k^{e_k},$$

and any other expression for n as a product of prime numbers is identical to this except, perhaps, for the order in which the factors are written.

The Standard factored Form

• Definition

1

Given any integer n > 1, the **standard factored form** of *n* is an expression of the form

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k},$$

where k is a positive integer; $p_1, p_2, ..., p_k$ are prime numbers; $e_1, e_2, ..., e_k$ are positive integers; and $p_1 < p_2 < \cdots < p_k$.

Example: Write 3,300 in standard factored form.

$$3,300 = 100 \cdot 33$$

= 4 \cdot 25 \cdot 3 \cdot 11
= 2 \cdot 2 \cdot 5 \cdot 5 \cdot 3 \cdot 11
= 2² \cdot 3¹ \cdot 5² \cdot 11¹.

Using Unique Factorization to Solve a Problem

Suppose *m* is an integer such that

8.7.6.5.4.*3*.2.*m* = 17.16.15.14.13.12.11.10

Does 17 | *m*?

1

Solution:

Since 17 a prime in the left, it should be also in the right side. Since we cannot produce 17 form (8,7,6,5,4,3 or 2) it should be a prime factor of *m*