Lecture Notes on **Discrete Mathematics**. Birzeit University, Palestine, 2015

Number Theory and Proof Methods

Mustafa Jarrar

4.1 Introduction

4.2 Rational Numbers

4.3 Divisibility

,

4.4 Quotient-Remainder Theorem

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Lectures Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

1

This lecture is based on, but not limited to, chapter 4 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Number Theory

4.4 Quotient-Remainder Theorem

In this lecture:

,

Part 1: Quotient-Remainder Theorem

□ Part 2: *div* and *mod*, and applications in real-life

□ Part 3: Representing Integers in Quotient-Remainder

Part 4: Absolute Value

Quotient-Remainder Theorem

Notice that:
$$4 \boxed{11} \leftarrow \text{quotient}$$

 $4 \boxed{11} \leftarrow \text{quotient}$
 $11 = 2 \cdot 4 + 3.$
 \uparrow
 $11 = 3 \cdot 4 + 3.$
 \uparrow
 $2 \text{ groups of } 4$
 3 left over

Theorem 4.4.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist unique integers q and r such that

$$n = dq + r$$
 and $0 \le r < d$.

$$54 = 4 \cdot 13 + 2$$

 $-54 = 4 \cdot (-14)$
 $54 = 70 \cdot 0 + 3$

Examples:

$$\cdot 13 + 2$$
 $q = 13$ $r = 2$ $\cdot (-14) + 2$ $q = -14$ $r = 2$ $r 0 \cdot 0 + 54$ $q = 0$ $r = 54$

Number Theory

4.4 Quotient-Remainder Theorem

In this lecture:

,

Part 1: Quotient-Remainder Theorem

Part 2: div and mod, and applications in real-life

Part 3: Representing Integers in Quotient-Remainder

Part 4: Absolute Value

div and mod

Definition

1

Examples:

$$32 \text{ div } 9 = 3$$

 $32 \mod 9 = 5$

Application of div and mod

Computing the Day of the Week

Suppose today is Tuesday, and neither this year nor next year is a leap year (سنة كبيسة). What day of the week will it be 1 year from today?

 $365 \ div \ 7 = 52$ and $365 \ mod \ 7 = 1$

So,

1

after 364 it will be Tuesday, and after 365 it will be Wednesday

Application of div and mod

Computing the Day of the Week

If today is Saturday and it is 16/10/2021, which day it will be on 20/2/2022?

The number of days from today to 20/2/2022 = 15 in October + 30 in November + 31 in December + 31 in January + 20 in February = <u>127 days</u>

 $127 \text{ div } 7 = 18 \quad 127 \mod 7 = 1$

1

That is, after 18 weeks the day will be Saturday, and one day after, it will be **Sunday**

Application of div and mod

Solving a Problem about mod

Suppose *m* is an integer. If *m* mod 11 = 6, what is $4m \mod 11$?

m = 11q + 6

So,
$$4m = 44q + 24$$

= $44q + 22 + 2$
= $11(4q + 2) + 2$ (4q + 2) is integer

Thus $4m \mod 11 = 2$

Number Theory

4.4 Quotient-Remainder Theorem

In this lecture:

,

□ Part 1: Quotient-Remainder Theorem

□ Part 2: *div* and *mod*, and applications in real-life

Part 3: Representing Integers in Quotient-Remainder

Part 4: Absolute Value

Representing Integers using the quotient-remainder theorem Parity Property

We represent any number as: n = 2q + r and $0 \le r < 2$

Because we have only r = 0 and r = 1, then:

n = 2q + 0 or n = 2q + 1Even Odd

Therefore, n is either <u>even</u> or <u>odd</u> (parity)

Representing Integers using the quotient-remainder theorem Proving Parity Property

Theorem 4.4.2 The Parity Property

Any two consecutive integers have opposite parity.

Proof:

1

Given *m* and m+1 are consecutive integers

Then, one is odd and the other is even (by parity property)

Case1 (m is even): m = 2k, so m + 1 = 2k + 1, which is odd

Case2 (m is odd): m = 2k + 1 and so m+1 = (2k+1) + 1 = 2k + 2 = 2(k+1).

thus m + 1 is even.

Proof by division into cases

The "divide into cases" Proof Method

Method of Proof by Division into Cases

To prove a statement of the form "If A_1 or A_2 or ... or A_n , then *C*," prove all of the following: If A_1 , then *C*,

If A_2 , then C,

If A_n , then C.

This process shows that C is true regardless of which of A_1, A_2, \ldots, A_n happens to be the case.

Representing Integers using the quotient-remainder theorem Integers Modulo 4

We represent any integer as:

n=4q or n=4q+1 or n=4q+2 or n=4q+3

This implies that there exist an integer quotient q and a remainder r such that

n = 4q + r and $0 \le r < 4$.

Using the "divide into cases" Proof Method

Theorem 4.4.3

The square of any odd integer has the form 8m + 1 for some integer m.

Proof: $\forall n \in Odd, \exists m \in Z : n^2 = 8m + 1.$

Hint: any odd integer can be (4q+1) *or* (4q+3)*.*

Case 1 (n=4q+1):

 $n^2 = 8m + 1 = (4q+1)^2 = 16q^2 + 8q + 1 = 8(2q^2 + q) + 1$ (2q² + q) can be is an integer m, thus $n^2 = 8m + 1$

Case 2 (4q+3):

 $n^2 = 8m + 1 = (4q+3)^2 = 16q^2 + 24q + 8 + 1 = 8(2q^2 + 3q+1) + 1$ $(2q^2 + 3q+1)$ can be is an integer *m*, thus $n^2 = 8m + 1$

Number Theory

4.4 Quotient-Remainder Theorem

In this lecture:

,

□ Part 1: Quotient-Remainder Theorem

□ Part 2: *div* and *mod*, and applications in real-life

□ Part 3: Representing Integers in Quotient-Remainder

Part 4: Absolute Value

Absolute Value

القيمة المطلقة

Definition

1

For any real number x, the **absolute value of** x, denoted |x|, is defined as follows:

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Absolute Value

Lemma 4.4.4

For all real numbers $r, -|r| \le r \le |r|$.

Proof:

1

Suppose *r* is any real number. We divide into cases according to whether $r \ge 0$ or r < 0.

Case 1 (r \ge 0): by definition |r| = r. Also, *r* is positive and -|r| is negative, $\rightarrow -|r| < r$.

Case 2 (r < 0): by definition |r| = -r, thus, -|r| = r. Also *r* is negative and |r| is positive. $\rightarrow r < |r|$.

Thus, in either case, $-|r| \le r \le |r|$

Absolute Value

Lemma 4.4.5

1

```
For all real numbers r, |-r| = |r|.
```

Proof: Suppose *r* is any real number. By Theorem T23 in Appendix A, if r > 0, then -r < 0, and if r < 0, then -r > 0. Thus

-r = -r	$ \begin{cases} -r \\ 0 \\ -(-r) \end{cases} $	if $-r > 0$ if $-r = 0$ if $-r < 0$	by definition of absolute value
= -	$\left\{ \begin{matrix} -r \\ 0 \\ r \end{matrix} \right.$	if $-r > 0$ if $-r = 0$ if $-r < 0$	because $-(-r) = r$ by Theorem T4 in Appendix A
=	$\left\{ \begin{matrix} -r \\ 0 \\ r \end{matrix} ight.$	if $r < 0$ if $-r = 0$ if $r > 0$	because, by Theorem T24 in Appendix A, when $-r > 0$, then $r < 0$, when $-r < 0$, then $r > 0$, and when $-r = 0$, then $r = 0$
=	$\left\{ \begin{matrix} r\\ -r \end{matrix} \right.$	$ if r \ge 0 \\ if r < 0 $	by reformatting the previous result

= |r|

by definition of absolute value.

Absolute Value and Triangle Inequality

Theorem 4.4.6 The Triangle Inequality

For all real numbers x and y, $|x + y| \le |x| + |y|$.

Proof:

1

Case 1 $(x + y \ge 0)$: |x + y| = x + y by Lemma 4.4.4, and so, $x \le |x|$ and $y \le |y|$ hence, $|x + y| = x + y \le |x| + |y|$

Case 2 (x + *y* < **0**): |x + y| = -(x + y) = (-x) + (-y) by Lemmas 4.4.4 &4.4.5 and so, $-x \le |-x| = |x|$ and $-y \le |-y| = |y|$. hence, $|x + y| = (-x) + (-y) \le |x| + |y|$.