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5.1 Sequences

In this lecture:

q Part 1: Why we need Sequences (Real-life examples). 
q Part 2: Sequence and Patterns
q Part 3: Summation: Notation, Expanding & Telescoping
q Part 4: Product and Factorial
q Part 5: Properties of Summations and Products
q Part 6: Sequence in Computer Loops and Dummy Variables
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Ak = 2K
227

CHAPTER 5

SEQUENCES, MATHEMATICAL
INDUCTION, AND RECURSION

One of the most important tasks of mathematics is to discover and characterize regular
patterns, such as those associated with processes that are repeated. The main mathemati-
cal structure used in the study of repeated processes is the sequence, and the main mathe-
matical tool used to verify conjectures about sequences is mathematical induction. In this
chapter we introduce the notation and terminology of sequences, show how to use both
ordinary and strong mathematical induction to prove properties about them, illustrate the
various ways recursively defined sequences arise, describe a method for obtaining an
explicit formula for a recursively defined sequence, and explain how to verify the cor-
rectness of such a formula. We also discuss a principle—the well-ordering principle for
the integers—that is logically equivalent to the two forms of mathematical induction, and
we show how to adapt mathematical induction to prove the correctness of computer algo-
rithms. In the final section we discuss more general recursive definitions, such as the one
used for the careful formulation of the concept of Boolean expression, and the idea of
recursive function.

5.1 Sequences

A mathematician, like a painter or poet, is a maker of patterns.
— G. H. Hardy, A Mathematician’s Apology, 1940

Imagine that a person decides to count his ancestors. He has two parents, four grandpar-
ents, eight great-grandparents, and so forth, These numbers can be written in a row as

2, 4, 8, 16, 32, 64, 128, . . .

The symbol “. . .” is called an ellipsis. It is shorthand for “and so forth.”
To express the pattern of the numbers, suppose that each is labeled by an integer

giving its position in the row.

Position in the row 1 2 3 4 5 6 7 . . .

Number of ancestors 2 4 8 16 32 64 128 . . .

The number corresponding to position 1 is 2, which equals 21. The number corresponding
to position 2 is 4, which equals 22. For positions 3, 4, 5, 6, and 7, the corresponding
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In Nature
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In programing

Any difference between these loops
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a Sequence is a set of elements written in a row. 

Each individual element ak is called a term. 

The k in ak is called a subscript or index

am, am+1, am+2,  . . . , an
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Finding Terms of Sequences Given by Explicit Formulas

Define sequences a1, a2, a3, . . . and b2, b3, b4, . . . by the following 
explicit formulas: 

Compute the first five terms of both sequences. 
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Finding Terms of Sequences Given by Explicit Formulas

Define sequences a1, a2, a3, . . . and b2, b3, b4, . . . by the following 
explicit formulas: 

Compute the first five terms of both sequences. 
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Finding Terms of Sequences Given by Explicit Formulas

Compute the first six terms of the sequence c0 , c1 , c2 , . . . defined as 
follows:  cj = (−1)j for all integers   j ≥ 0. 

Solution: 
c0 =(−1)0 =1
c1 = (−1)1 = −1 
c2 =(−1)2 =1 
c3 = (−1)3 = −1 
c4 =(−1)4 =1 
c5 = (−1)5 = −1 
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Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the 
following initial terms: 
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Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the 
following initial terms: 
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Summation
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Summation
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Example 
Let a1 = −2, a2 = −1, a3 = 0, a4 = 1, and a5 = 2. 
Compute the following: 
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Example 
Let a1 = −2, a2 = −1, a3 = 0, a4 = 1, and a5 = 2. 
Compute the following: 
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When the Terms of a Summation are Given by a Formula

Example 

Compute the following summation: 
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When the Terms of a Summation are Given by a Formula

Example 

Compute the following summation: 
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• Summation to Expanded Form

• Expanded Form to Summation

• Separating Off a Final Term

• Telescoping

Useful Operations

èThese concepts are very important to understand computer loops
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Summation to Expanded Form

Write the following summation in expanded form: 
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Summation to Expanded Form

Write the following summation in expanded form: 
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Expanded Form to Summation

Express the following using summation notation:
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Expanded Form to Summation

Express the following using summation notation:
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Separating Off a Final Term and Adding On a Final Term n

Rewrite                   by separating off the final term. 

Write                            as a single summation.
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Separating Off a Final Term and Adding On a Final Term n

Rewrite                   by separating off the final term. 

Write                            as a single summation.
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Separating Off a Final Term and Adding On a Final Term n

Rewrite                   by separating off the final term. 

Write                            as a single summation.
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Telescoping

Example: 

A telescoping series is a series whose partial sums eventually 
only have a fixed number of terms after cancellation.

232 Chapter 5 Sequences, Mathematical Induction, and Recursion

Example 5.1.8 Evaluating a1, a2, a3, . . . , an for Small n

What is the value of the expression
1

1 ·2 + 1
2 ·3 + 1

3 ·4 + · · · + 1
n ·(n + 1)

when

n = 1? n = 2? n = 3?

!
Caution! Do not write
that for n = 1, the sum is

1
1 ·2

+ 1
2 ·3

+ 1
3 ·4

+ · · · + 1
1 ·2

.

This is crossed out
because it is incorrect.

Solution

When n = 1, the expression equals
1

1 ·2 = 1
2

.

When n = 2, it equals
1

1 ·2 + 1
2 ·3 = 1

2
+ 1

6
= 2

3
.

When n = 3, it is
1

1 ·2 + 1
2 ·3 + 1

3 ·4 = 1
2

+ 1
6

+ 1
12

= 3
4
.

■

A more mathematically precise definition of summation, called a recursive definition,
is the following:∗ If m is any integer, then

m∑

k=m

ak = am and
n∑

k=m

ak =
n−1∑

k=m

ak + an for all integers n > m.

When solving problems, it is often useful to rewrite a summation using the recursive form
of the definition, either by separating off the final term of a summation or by adding a
final term to a summation.

Example 5.1.9 Separating Off a Final Term and Adding On a Final Term

a. Rewrite
n+1∑

i=1

1
i2

by separating off the final term.

b. Write
n∑

k=0

2k + 2n+1 as a single summation.

Solution

a.
n+1∑

i=1

1
i2

=
n∑

i=1

1
i2

+ 1
(n + 1)2

b.
n∑

k=0

2k + 2n+1 =
n+1∑

k=0

2k ■

In certain sums each term is a difference of two quantities. When you write such sums
in expanded form, you sometimes see that all the terms cancel except the first and the last.
Successive cancellation of terms collapses the sum like a telescope.

Example 5.1.10 A Telescoping Sum

Some sums can be transformed into telescoping sums, which then can be rewritten as a
simple expression. For instance, observe that

1
k
− 1

k + 1
= (k + 1)− k

k(k + 1)
= 1

k(k + 1)
.

Use this identity to find a simple expression for
n∑

k=1

1
k(k + 1)

.

∗Other recursively defined sequences are discussed later in this section and, in greater detail, in
Section 5.6.
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n

i=1
i – (i+1) =(1-2) + (2-3) + . . . + (n –(n+1))

= 1 – (n+1) 

=-n

S=0;
for (i=1;i<=n;i++)

S= S+ i-(i+1);
S = -n;

This is very useful in programing: 
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Telescoping

A telescoping series is a series whose partial sums eventually 
only have a fixed number of terms after cancellation.

Example: 5.1 Sequences 233

Solution
n∑

k=1

1
k(k + 1)

=
n∑

k=1

(
1
k
− 1

k + 1

)

=
(

1
1
− 1

2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+ · · · +

(
1

n − 1
− 1

n

)
+
(

1
n
− 1

n + 1

)

= 1− 1
n + 1

. ■

Product Notation
The notation for the product of a sequence of numbers is analogous to the notation for
their sum. The Greek capital letter pi, !, denotes a product. For example,

5∏

k=1

ak = a1a2a3a4a5.

• Definition

If m and n are integers and m ≤ n, the symbol
n∏

k=m
ak , read the product from k

equals m to n of a-sub-k, is the product of all the terms am, am+1, am+2, . . . , an .

We write n∏

k=m

ak = am ·am+1 ·am+2 · · · an.

A recursive definition for the product notation is the following: If m is any
integer, then

m∏

k=m

ak = am and
n∏

k=m

ak =
(

n−1∏

k=m

ak

)

·an for all integers n > m.

Example 5.1.11 Computing Products

Compute the following products:

a.
5∏

k=1

k b.
1∏

k=1

k
k + 1

Solution

a.
5∏

k=1

k = 1 ·2 ·3 ·4 ·5 = 120 b.
1∏

k=1

k
k + 1

= 1
1 + 1

= 1
2

■

Properties of Summations and Products
The following theorem states general properties of summations and products. The proof
of the theorem is discussed in Section 5.6.
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S=0;
for (k=1;k<=n;k++)

S=S+ 1/k*(k+1);

S = 1- (1/(n+1);
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5.1 Sequences
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q Part 3: Summation: Notation, Expanding & Telescoping

q Part 4: Product and Factorial
q Part 5: Properties of Summations and Products
q Part 6: Sequence in Computer Loops and Dummy Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, 

Mustafa Jarrar: Lecture Notes on Sequences & Mathematical Induction.
Birzeit University, Palestine, 2015

Sequences & Mathematical Induction



33,

Product Notation

5.1 Sequences 233

Solution
n∑

k=1

1
k(k + 1)

=
n∑

k=1

(
1
k
− 1

k + 1

)

=
(

1
1
− 1

2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+ · · · +

(
1

n − 1
− 1

n

)
+
(

1
n
− 1

n + 1

)

= 1− 1
n + 1

. ■

Product Notation
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ak = am ·am+1 ·am+2 · · · an.

A recursive definition for the product notation is the following: If m is any
integer, then

m∏

k=m

ak = am and
n∏

k=m

ak =
(

n−1∏

k=m

ak

)

·an for all integers n > m.

Example 5.1.11 Computing Products

Compute the following products:
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k=1
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k + 1

Solution
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Factorial Notation
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Factorial and “n Choose r” Notation
The product of all consecutive integers up to a given integer occurs so often in mathemat-
ics that it is given a special notation—factorial notation.

• Definition

For each positive integer n, the quantity n factorial denoted n!, is defined to be the
product of all the integers from 1 to n:

n! = n ·(n − 1) · · · 3 ·2 ·1.

Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

The definition of zero factorial as 1 may seem odd, but, as you will see when you read
Chapter 9, it is convenient for many mathematical formulas.

Example 5.1.15 The First Ten Factorials

0! = 1 1! = 1

2! = 2 ·1 = 2 3! = 3 ·2 ·1 = 6

4! = 4 ·3 ·2 ·1 = 24 5! = 5 ·4 ·3 ·2 ·1 = 120

6! = 6 ·5 ·4 ·3 ·2 ·1 = 720 7! = 7 ·6 ·5 ·4 ·3 ·2 ·1 = 5,040

8! = 8 ·7 ·6 ·5 ·4 ·3 ·2 ·1 9! = 9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1
= 40,320 = 362,880 ■

As you can see from the example above, the values of n! grow very rapidly. For
instance, 40! ∼= 8.16× 1047, which is a number that is too large to be computed exactly
using the standard integer arithmetic of the machine-specific implementations of many
computer languages. (The symbol ∼= means “is approximately equal to.”)

A recursive definition for factorial is the following: Given any nonnegative integer n,

n! =
{

1 if n = 0
n ·(n − 1)! if n ≥ 1.

The next example illustrates the usefulness of the recursive definition for making
computations.

!
Caution! Note that
n · (n − 1)! is to be
interpreted as
n · [(n − 1)!].

Example 5.1.16 Computing with Factorials

Simplify the following expressions:

a.
8!
7! b.

5!
2! ·3! c.

1
2! ·4! + 1

3! ·3! d.
(n + 1)!

n! e.
n!

(n − 3)!
Solution

a.
8!
7! = 8 ·7!

7! = 8

b.
5!

2! ·3! = 5 ·4 ·3!
2! ·3! = 5 ·4

2 ·1 = 10
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0! =1
2! = 2·1 = 2
4! = 4·3·2·1 = 24
6! = 6·5·4·3·2·1 = 720 
8! = 8·7·6·5·4·3·2·1 
= 40,320 

1! =1
3! =3·2·1=6
5! = 5·4·3·2·1 = 120
7! = 7·6·5·4·3·2·1 = 5,040
9! = 9·8·7·6·5·4·3·2·1 
= 362,880 
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A recursive definition for factorial

Factorial Notation

0! =1
2! = 2·1 = 2
4! = 4·3·2·1 = 24
6! = 6·5·4·3·2·1 = 720 
8! = 8·7·6·5·4·3·2·1 

= 40,320 

1! =1
3! =3·2·1=6
5! = 5·4·3·2·1 = 120
7! = 7·6·5·4·3·2·1 = 5,040
9! = 9·8·7·6·5·4·3·2·1 

= 362,880 
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Computing with Factorials
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Properties of Summations and Products

è Remember to apply these in programing Loops

234 Chapter 5 Sequences, Mathematical Induction, and Recursion

Theorem 5.1.1

If am, am+1, am+2, . . . and bm, bm+1, bm+2, . . . are sequences of real numbers and c
is any real number, then the following equations hold for any integer n ≥ m:

1.
n∑

k=m

ak +
n∑

k=m

bk =
n∑

k=m

(ak + bk)

2. c ·
n∑

k=m

ak =
n∑

k=m

c ·ak generalized distributive law

3.

(
n∏

k=m

ak

)

·
(

n∏

k=m

bk

)

=
n∏

k=m

(ak ·bk).

Example 5.1.12 Using Properties of Summation and Product

Let ak = k + 1 and bk = k − 1 for all integers k. Write each of the following expressions
as a single summation or product:

a.
n∑

k=m

ak + 2 ·
n∑

k=m

bk b.

(
n∏

k=m

ak

)

·
(

n∏

k=m

bk

)

Solution

a.
n∑

k=m

ak + 2 ·
n∑

k=m

bk =
n∑

k=m

(k + 1) + 2 ·
n∑

k=m

(k − 1) by substitution

=
n∑

k=m

(k + 1) +
n∑

k=m

2 ·(k − 1) by Theorem 5.1.1 (2)

=
n∑

k=m

((k + 1) + 2 ·(k − 1)) by Theorem 5.1.1 (1)

=
n∑

k=m

(3k − 1)
by algebraic
simplification

b. ( n∏

k=m

ak

)

·
(

n∏

k=m

bk

)

=
(

n∏

k=m

(k + 1)

)

·
(

n∏

k=m

(k − 1)

)

by substitution

=
n∏

k=m

(k + 1) ·(k − 1) by Theorem 5.1.1 (3)

=
n∏

k=m

(k2 − 1)
by algebraic
simplification

■

Change of Variable
Observe that

3∑

k=1

k2 = 12 + 22 + 32

and also that
3∑

i=1

i2 = 12 + 22 + 32.
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Let ak = k + 1 and bk = k - 1 for all integers k. Write each of the 
following expressions as a single summation or product:

Example
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Let ak = k + 1 and bk = k - 1 for all integers k. Write each of the 
following expressions as a single summation or product:

Example
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5.1 Sequences

In this lecture:

q Part 1: Why we need Sequences (Real-life examples). 
q Part 2: Sequence and Patterns
q Part 3: Summation: Notation, Expanding & Telescoping
q Part 4: Product and Factorial
q Part 5: Properties of Summations and Products

q Part 6: Sequence in Computer Loops & Change of Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, 

Mustafa Jarrar: Lecture Notes on Sequences & Mathematical Induction.
Birzeit University, Palestine, 2015

Sequences & Mathematical Induction
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Change of Variable

Replaced Index by any other symbol (called a dummy variable).

208 Chapter 4 Sequences and Mathematical Induction

Solution
n n n n

a. Eak+2 ELbk E=(k+ 1)+2 2 (k- 1) by substitution
k=m k=m k=m k=m

nl n

= (k+ 1) + E 2 (k- 1) by Theorem 4..1 (2)
k-m k=m

n

= ((k +1) + 2*(k-1)) by Theorem 4.1.1 (1)
k=m
k-n

E (3k-1) by algebraic
-) simplification

k=m

b. ( ak) ( bk) = (h(k + )) (h(k - 1)) by substitution
k=m k=m k=m k=m

n

= 17(k + 1) (k-1) by Theorem 4.1.1 (3)
k=m

n

= n(k2 1) by algebraic
simplification

k=m

Change of Variable
Observe that

Lk 2 = 12 + 22 + 32
k=l

and also that
3

i2= 12+22+32.
i-1

Hence
3 3

k 2 = E i2.
k=l i=l

This equation illustrates the fact that the symbol used to represent the index of a summation
can be replaced by any other symbol as long as the replacement is made in each location
where the symbol occurs. As a consequence, the index of a summation is called a dummy
variable. A dummy variable is a symbol that derives its entire meaning from its local
context. Outside of that context (both before and after), the symbol may have another
meaning entirely.
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Programing Loops

Any difference between these loops
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Change Variables
Transform the following summation by making the specified 
change of variable.
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Change Variables
Transform the following summation by making the specified 
change of variable.
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Change Variables
Transform the following summation by making the specified 
change of variable.
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Change Variables
Transform the following summation by making the specified 
change of variable.
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Programing Loops

All questions in the exams will be loops

Thus, I suggest:
Convert all previous examples into loops and play 

with them


