Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

Mustafa Jarrar

,

5.1 Sequences

5.2 Mathematical Induction I

5.3 Mathematical Induction II

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Online Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

,

This lecture is based on (but not limited to) to chapter 5 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

Part 1: Why we need <u>Sequences</u> (Real-life examples).

□ Part 2: Sequence and Patterns

□ Part 3: Summation: Notation, Expanding & Telescoping

Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops and Dummy Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables,

(المتتاليات) Sequences كم عدد أجدادك: حتى المستوى الاول(؟)حتى المستوى الثاني(؟)حتى المستوى الثالث(؟)حتى المستوى اخامس(؟

Position in the row	1	2	3	4	5	6	7
Number of ancestors	2	4	8	16	32	64	128

؟(K حتى المستوى)

$$A_{k} = 2^{k}$$

Train Schedule

In Nature

https://www.youtube.com/watch?v=ahXIMUkSXX0

In programing

Any difference between these loops

1

 1. for i := 1 to n 2. for j := 0 to n - 1 3. for k := 2 to n + 1

 print a[i] print a[j + 1] print a[k - 1]

 next i next j next k

 $\sum_{k=1}^{n} a[k].$ s := a[1] s := 0for k := 2 to n s := s + a[k] s := s + a[k] s := s + a[k] next k next k

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

□ Part 1: Why we need <u>Sequences</u> (Real-life examples).

Part 2: Sequence and Patterns

Part 3: Summation: Notation, Expanding & Telescoping

Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops and Change of Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables,

 $a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}$

a Sequence is a set of elements written in a row.

Each individual element a_k is called a **term**.

The k in a_k is called a **subscript** or **index**

Finding Terms of Sequences Given by Explicit Formulas

Define sequences a_1, a_2, a_3, \ldots and b_2, b_3, b_4, \ldots by the following explicit formulas:

$$a_k = \underline{k}$$
 for some integers $k \ge 1$
 $b_i = \underline{i-1}$ for some integers $i \ge 2$
 i

Compute the first five terms of both sequences.

Finding Terms of Sequences Given by Explicit Formulas

Define sequences a_1, a_2, a_3, \ldots and b_2, b_3, b_4, \ldots by the following explicit formulas:

$$a_k = \underline{k}$$
 for some integers $k \ge 1$
 $b_i = \underline{i-1}$ for some integers $i \ge 2$
 i

Compute the first five terms of both sequences.

Finding Terms of Sequences Given by Explicit Formulas

Compute the first six terms of the sequence c_0, c_1, c_2, \ldots defined as follows: $c_j = (-1)^j$ for all integers $j \ge 0$.

Solution:

$$C_{0} = (-1)^{0} = 1$$

$$C^{1} = (-1)^{1} = -1$$

$$C^{2} = (-1)^{2} = 1$$

$$C^{3} = (-1)^{3} = -1$$

$$C^{4} = (-1)^{4} = 1$$

$$C^{5} = (-1)^{5} = -1$$

Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$1, \ -\frac{1}{4}, \ \frac{1}{9}, \ -\frac{1}{16}, \ \frac{1}{25}, \ -\frac{1}{36}, \dots$$

Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$a_{k} = \frac{(-1)^{k+1}}{k^{2}} \quad \text{for all integers } k \ge 1.$$
or
$$a_{k} = \frac{(-1)^{k+1}}{k^{2}} \quad \text{for all integers } k \ge 1.$$
or
$$a_{k} = \frac{(-1)^{k}}{(k+1)^{2}} \quad \text{for all integers } k \ge 0.$$

→How to prove such formulas of sequences?

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

□ Part 1: Why we need Sequences (Real-life examples).

□ Part 2: Sequence and Patterns

Part 3: Summation: Notation, Expanding & Telescoping

Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops and Change of Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables,

Summation

Summation

Definition

1

If *m* and *n* are integers and $m \le n$, the symbol $\sum_{k=m}^{n} a_k$, read the summation from *k* equals *m* to *n* of *a*-sub-*k*, is the sum of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n . We say that $a_m + a_{m+1} + a_{m+2} + \ldots + a_n$ is the expanded form of the sum, and we write

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n.$$

We call k the index of the summation, m the lower limit of the summation, and n the upper limit of the summation.

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following:

a.
$$\sum_{k=1}^{5} a_k$$
 b. $\sum_{k=2}^{2} a_k$ c. $\sum_{k=1}^{2} a_{2k}$

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following:

a.
$$\sum_{k=1}^{5} a_k$$
 b. $\sum_{k=2}^{2} a_k$ c. $\sum_{k=1}^{2} a_{2k}$

Solution:
a.
$$\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = (-2) + (-1) + 0 + 1 + 2 = 0$$

b. $\sum_{k=2}^{2} a_k = a_2 = -1$
c. $\sum_{k=1}^{2} a_{2k} = a_{2\cdot 1} + a_{2\cdot 2} = a_2 + a_4 = -1 + 1 = 0$

When the Terms of a Summation are Given by a Formula

Compute the following summation:

1

 $\sum_{k=1}^{5} k^2.$

When the Terms of a Summation are Given by a Formula

Compute the following summation:

1

 $\sum_{k=1}^{5} k^2.$

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55.$$

Useful Operations

- Summation to Expanded Form
- Expanded Form to Summation
- Separating Off a Final Term
- Telescoping

1

→ These concepts are very important to understand computer loops

Summation to Expanded Form

Write the following summation in expanded form:

1

Summation to Expanded Form

Write the following summation in expanded form:

 $\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1}.$

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n}}{n+1}$$

Expanded Form to Summation

Express the following using summation notation:

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}$$

Expanded Form to Summation

Express the following using summation notation:

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}$$

Solution

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n} = \sum_{k=0}^{n} \frac{k+1}{n+k}.$$

Separating Off a Final Term and Adding On a Final Term n

Rewrite
$$\sum_{i=1}^{n+1} \frac{1}{i^2}$$
 by separating off the final term.

Write
$$\sum_{k=0}^{n} 2^k + 2^{n+1}$$
 as a single summation.

Separating Off a Final Term and Adding On a Final Term n

Rewrite
$$\sum_{i=1}^{n+1} \frac{1}{i^2}$$
 by separating off the final term.

$$\sum_{i=1}^{n+1} \frac{1}{i^2} = \sum_{i=1}^n \frac{1}{i^2} + \frac{1}{(n+1)^2}$$

Write $\sum_{k=0}^{n} 2^k + 2^{n+1}$ as a single summation.

Separating Off a Final Term and Adding On a Final Term n

Rewrite
$$\sum_{i=1}^{n+1} \frac{1}{i^2}$$
 by separating off the final term.
 $\sum_{i=1}^{n+1} \frac{1}{i^2} = \sum_{i=1}^n \frac{1}{i^2} + \frac{1}{(n+1)^2}$
Write $\sum_{k=0}^n 2^k + 2^{n+1}$ as a single summation.

$$\sum_{k=0}^{n} 2^{k} + 2^{n+1} = \sum_{k=0}^{n+1} 2^{k}$$

Telescoping

A telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation.

Example:
$$\sum_{i=1}^{n} i - (i+1) = (1-2) + (2-3) + \dots + (n - (n+1))$$

= $1 - (n+1)$

=-*n*

This is very useful in programing:

Telescoping

A telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation.

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

Part 1: Why we need Sequences (Real-life examples).

□ Part 2: Sequence and Patterns

□ Part 3: Summation: Notation, Expanding & Telescoping

Part 4: Product and Factorial

-> Part 5: Properties of Summations and Products

--> Part 6: Sequence in Computer Loops and Dummy Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables,

Product Notation

• Definition

If *m* and *n* are integers and $m \le n$, the symbol $\prod_{k=m}^{n} a_k$, read the **product from** *k* equals *m* to *n* of *a*-sub-*k*, is the product of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n .

We write

$$\prod_{k=m}^n a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdots a_n.$$

$$\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120 \qquad \prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$$

Factorial Notation

• Definition

1

For each positive integer *n*, the quantity *n* factorial denoted *n*!, is defined to be the product of all the integers from 1 to *n*:

$$n! = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1.$$

Zero factorial, denoted 0!, is defined to be 1:

$$0! = 1$$

0! =1	1!=1
$2! = 2 \cdot 1 = 2$	3! =3.2.1=6
$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$	$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$
$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$	7! = 7.6.5.4.3.2.1 = 5,040
$8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$	$9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
= 40,320	= 362,880

Factorial Notation

A recursive definition for factorial

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{if } n \ge 1 \end{cases}$$

0! = 1 $2! = 2 \cdot 1 = 2$ $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$ $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$ $8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ = 40,320

$$1! =1$$

$$3! =3 \cdot 2 \cdot 1 = 6$$

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5,040$$

$$9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= 362,880$$

Computing with Factorials

$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8 \qquad \qquad \frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10$$

$$\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$$

$$\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2)$$
$$= n^3 - 3n^2 + 2n$$

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

- □ Part 1: Why we need Sequences (Real-life examples).
- □ Part 2: Sequence and Patterns
- □ Part 3: Summation: Notation, Expanding & Telescoping
- Part 4: Product and Factorial

Part 5: Properties of Summations and Products
 Part 6: Sequence in Computer Loops and Dummy Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables,

Properties of Summations and Products

Theorem 5.1.1

1

If $a_m, a_{m+1}, a_{m+2}, \ldots$ and $b_m, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and *c* is any real number, then the following equations hold for any integer $n \ge m$:

1.
$$\sum_{k=m}^{n} a_{k} + \sum_{k=m}^{n} b_{k} = \sum_{k=m}^{n} (a_{k} + b_{k})$$

2.
$$c \cdot \sum_{k=m}^{n} a_{k} = \sum_{k=m}^{n} c \cdot a_{k}$$
 generalized distributive law
3.
$$\left(\prod_{k=m}^{n} a_{k}\right) \cdot \left(\prod_{k=m}^{n} b_{k}\right) = \prod_{k=m}^{n} (a_{k} \cdot b_{k}).$$

→ Remember to apply these in programing Loops

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write each of the following expressions as a single summation or product:

 $\prod_{k=m} a_k \cdot \prod_{k=m} b_k$

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write each of the following expressions as a single summation or product:

$$\sum_{k=m}^{n} a_{k} + 2 \cdot \sum_{k=m}^{n} b_{k}$$

$$\prod_{k=m}^{n} a_{k} \cdot \prod_{k=m}^{n} b_{k}$$

$$\prod_{k=m}^{n} a_{k} \cdot \prod_{k=m}^{n} b_{k}$$

$$(\prod_{k=m}^{n} a_{k}) \cdot (\prod_{k=m}^{n} b_{k}) = (\prod_{k=m}^{n} (k+1)) \cdot (\prod_{k=m}^{n} (k-1))$$

$$= \sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)$$

$$= \sum_{k=m}^{n} ((k+1) + 2 \cdot (k-1))$$

$$= \sum_{k=m}^{n} (3k-1)$$

1

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

Part 1: Why we need Sequences (Real-life examples).

- Part 2: Sequence and Patterns
- Part 3: Summation: Notation, Expanding & Telescoping
- Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops & Change of Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables,

Change of Variable

Observe: $\sum_{k=1}^{3} k^2 = 1^2 + 2^2 + 3^2$ $\sum_{i=1}^{3} i^2 = 1^2 + 2^2 + 3^2$. Hence: $\sum_{k=1}^{3} k^2 = \sum_{i=1}^{3} i^2$. Also Observe: $\sum_{j=2}^{4} (j-1)^2 = (2-1)^2 + (3-1)^2 + (4-1)^2$ $= 1^2 + 2^2 + 3^2$ $=\sum_{k=1}^{3}k^{2}.$

Replaced Index by any other symbol (called a **dummy variable**).

Programing Loops

Any difference between these loops

1

 1. for i := 1 to n 2. for j := 0 to n - 1 3. for k := 2 to n + 1

 print a[i] print a[j + 1] print a[k - 1]

 next i next j next k

 $\sum_{k=1}^{n} a[k].$ s := a[1] s := 0for k := 2 to n s := s + a[k] s := s + a[k] s := s + a[k] next k next k

Transform the following summation by making the specified change of variable.

$$\sum_{k=0}^{6} \frac{1}{k+1}$$
 Change variable $j = k+1$ For $(k=0; k \le 6; k++)$
Sum = Sum + 1/(k+1)

Transform the following summation by making the specified change of variable.

$$\sum_{k=0}^{6} \frac{1}{k+1}$$
 Change variable $j = k+1$ For $(k=0; k \le 6; k++)$
Sum = Sum + 1/(k+1)

$$\sum_{j=1}^{7} \frac{1}{j} = \sum_{k=1}^{7} \frac{1}{k}.$$
$$\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{k=1}^{7} \frac{1}{k}.$$

,

For (k=1; k≤7; k++) Sum = Sum + 1/(k)

Transform the following summation by making the specified change of variable.

$$\sum_{k=1}^{n+1} \frac{k}{n+k}$$

1

For (k=1; k<=n+1; k++) Sum = Sum + k/(n+k)

Change of variable: j = k - 1

Transform the following summation by making the specified change of variable.

$$\sum_{k=1}^{n+1} \frac{k}{n+k}$$
For (k=1; k<=n+1; k++)
Sum = Sum + k/(n+k)
Change of variable: $j = k - 1$

$$\sum_{j=0}^{n} \frac{j+1}{n+(j+1)} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$$

$$\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$$
For (k=0: k<=n: k++)

1

For (k=0; k<=n; k++) Sum = Sum + (k+1)/(n+k+1)

Programing Loops

All questions in the exams will be loops

Thus, I suggest: Convert all previous examples into loops and play with them