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What is Mathematical Induction

Mathematical induction is one of the most recently developed
methods of proof in mathematics.

History:

The first use of mathematical induction was by > _SI/Al-Kraji
(1000AD) in his book s_xdl / Al-Fakhri to prove math
sequences. In 1883 Augustus De Morgan described it carefully
and named mathematical induction.

The idea:
If the k" domino falls backward,

it pushes the (k+1)st domino @ Q %
backward. Q Q




What is Mathematical Induction

jl’rinciple of Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true:

1. P(a) is true.
2. For all integers k > a, if P(k) is true then P(k + 1) is true.

Then the statement
for all integers n > a, P(n)

is true.

Example:
how to know whether this P(n) can be true?
P(n): For all integers n > 8, n cents can be obtained using 3¢ and 5¢ coins.

. > Moves from specific cases to create a general rule (conjecture/
o), this is why it is called Principle, not a theorem

’



What is Mathematical Induction

Example

How to know whether this statement can be true?

For all integers n = 8, n cents can be obtained using 3¢ and 5¢ coins.

For all integers n = 8, P(n) is true, Number of Cents How to Obtain It
where P(n) is the sentence ‘“‘n cents 8¢ 3¢+ 5¢
can be obtained using 3¢ and S¢ o¢ 3¢+ 3¢+ 3¢
coins.” 10¢ 5¢+ 5¢
11¢ 3¢+ 3¢+ 5¢
Then we need to prove that P(n+1) is 12¢ 3¢+ 3¢+ 3¢+ 3¢
also true 13¢ 3¢+ 3¢+ 5¢
14¢ 3¢+ 3¢+ 3¢+ 5¢
15¢ S5¢+ 5¢+ 5¢
16¢ 3¢+ 3¢+ 5¢+ 5¢

17¢ 3¢+ 3¢+ 3¢+ 3¢+ 5¢
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Mathematical Induction as a Method of Proof

Proving a statement by mathematical induction is a two-step process.
The first step 1s called the basis step, and the second step is called the
inductive step.

Method of Proof by Mathematical Induction

Consider a statement of the form, “For all integers n > a, a property P (n) is true.”
To prove such a statement, perform the following two steps:

Step 1 (basis step): Show that P (a) is true.

Step 2 (inductive step): Show that for all integers k > a, if P (k) is true then
P(k + 1) 1s true. To perform this step,

suppose that P (k) is true, where k 1s any
particular but arbitrarily chosen integer with k > a.

[This supposition is called the inductive hypothesis./
Then

show that P(k + 1) is true.




Mathematical Induction as a Method of Proof

Example

How to know whether this statement can be true?
For all integers n = 8, n cents can be obtained using 3¢ and 5¢ coins.

Let the property P(n) be the sentence: n¢ can be obtained using 3¢ and S¢ coins. ¢ P(n)

Step 1 (basis step): Show P(8) is true: P(8) is true as 8¢ obtained by one 3¢ and one 5¢

Step 2(inductive step): Show for all integers k > 8, if P(k) is true then P(k+1) is true:

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k 2 8. That is: |
Suppose k£ is any integer k 2 8, k¢ obtained by 3¢ and 5¢ . & P(k) inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that
(k+ 1) ¢ / can be obtained using 3 ¢ / and 5 ¢ / coins. <& P(k + 1)
Case 1 (There is a 5¢ coin among those used to make up the k¢):
replace the 5¢/ coin by two 3¢/ coins; the result will be (k + 1)c/.
Case 2 (There is not a 5¢ coin among those used to make up the k ¢):

because k 2 8, at least three 3¢ must have been used. So remove
three 3¢ and replace them by two 5¢; the result will be (k + 1)¢.

Thus in either case (k + 1)¢ can be obtained using 3¢ and 5¢ [as was to be shown].

’
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Sum of the First n Integers

Who can sum all numbers from 1 to 100?

o e T 50 51 - - - - . . 08 99
| ! |
sum is 101
sum is 101
sum 1s 101
sum is 101

1 +2+3+---+n

nn-+1)

11



Theorem 5.2.2 Sum of the First n Integers

For all integers n > 1, 1+2+3+...+n:”’f”’2+1?

Same Question: Prove that these programs prints the same results in case n > /
For (i=1, i<n; i++) S=(n(n+1))/2

S=S+i; . woys A7 C\.
Print (“%d”, S); Print ("%d",5);



Theorem 5.2.2 Sum of the First n Integers

For all integers n > 1, 1+2+3+...+n=n§n2+1?

Same Question: Prove that these programs prints the same results in case n > /

For (i=1, i<n; i++) S=(n(n+1))/2

S=S+i; . oy M .
Print (“%d”, S); Print (“%d”,S);

Proving that both programs produce the same results 1s like proving that:
1+2+3+ . +p= nm*tl) & P(n)
2

Basis Step:  Show that P(1) is true.  P(1): 1 = 1(1+1)/2 = Thus P(1) is true
Inductive Step:  Show that for all integers k > 1,if P(k) is true then P(k + 1) is also true:
Suppose: 1+2+3+...+k = _k(k+l) 1s true & P(k) inductive hypothesis

P(k+1) = 142+, +k + (k+1)|= (k+é )(k+2) ¢ Pk+1)
= P(k) + (k+1)

=kl + 1)+ (kt]) = k(k2+ 1)+ 2(1\;-1)

= R4k + 20et]) =R+ 3k+2
sl i
(D),

A

w
=
©

N




Examples of Sums

Evaluate 2 +4 + 6 + - + 500.

244464--4+500=2-(1+2+3+---+250)

250-
:2.( 50 251)
2

= 62,750.

Evaluate 5+6+7 + 8 + - + 50.

54+6+7+8+---+50=1+2+3+---+50) — (1 +2+3+4)

50-51
=——--10
2

= 1,265

For an integer i = 2, write 1 + 2 + 3 + - + (h—1) in closed form.

(h—1)-[(h—1)+1]
2
(h—1)-h
-2

14243+ +(h—1)=




Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer n > 0,

n
i rn+1 —1
> 1=
. r—1
i=0
Proof (by mathematical induction):
0 0+1 _ r—1 k41
i——r 1 <_P(0) = :1 . rk+2—1
LT r—1 Zrlz—r_l < PG+
i=0 P .
k k+1 _ A N
S i = AR R Y7 Z(;
: r—1 inductive hypothesis =
i=0 },.k+1 -1
_ 4kt
r—1
B rk-{-l -1 rkH(r _ 1)
or—1 r—1
B (’,k-H _ 1) + rk—l—l(’, _ 1)
B r—1
B Pl ] kA2 ke
B r—1
I"k+2 -1




Mathematics in Programming
Example : Finding the sum of a geometric series

Prove that these codes will return the same output.

int n, r, sum=0; intn, r, sum=0;
inti; scanf("%d",&n);
scanf("%d",&n); scanf("%d",&r);
scanf("%d",&r);
if(r'=1) {

if(r 1=1) { sum=((pow(r,n+1))-1)/(r-1);

for(i=0 ; i<=n ; i++) { printf("%d\n", sum);

sum = sum + pow(r,i); }

}

printf("%d\n*, sum);
}

This code is proposed by a student/Zaina!

’
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Examples of Sums of a Geometric Sequence

In each of (a) and (b) below, assume that m 1s an integer that 1s
greater than or equal to 3. Write each of the sums in closed form.

(a) 143432 4432

43434 g2 ]

3-1
3l
=0

(b) 32433 +34 4---43m

3m-1 1
:9.( )
2

17
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Proposition 5.3.1 Proving a Divisibility Property

For all integers n > 0, 2°* — 1 is divisible by 3.

Proof (by mathematical induction):

3| 20— 1 & P(n)
Basis Step:  Show that P(0) is true.
P(0): 220-1=20-1 =1-1 =0 As 310, thus P(0) is true.

Inductive Step: Show that for all integers k 2 0, if P(k) is true then P(k + 1) is also true:.

Suppose: 22k - 1 is divisible by 3. < P(k) inductive hypothesis
22k — 1 = 3r for some integer r.
22+ -1 is divisible by 3. & P(k+1)
22(k+1)— 1 = D2k+2_ ] by the laws of exponents

—92k.02_ 1 =922k.4 — |
=2%(3 +1)-1=2%-3+(2%-1)=2%-3 +3r
=3(2%+r) Which is integer

so, by definition of divisibility, 22(+1) — 1 is divisible by 3




Mathematics in Programming
Example : Proving Property of a Sequence

What will the output of this program be for any input n?

int n;
scanf("%d",&n);

if(n >=0) {
if( (pow(2,(2%n)) - 1) %3 == 0) \\ does 272n -1 | 3?2 \\
printf("this property is true");
else
printf("this property isn't true");

20



Proposition 5.3.2 Proving Inequality

For all integers n > 3,2n + 1 < 2".

Proof (by mathematical induction):
Let P(n) be 2n+1<2n
Basis Step: Show that P(3) is true. P(3): 2.3+1 <2? which is true.
Inductive Step:  Show that for all integers k > 3, if P(k) is true then P(k + 1) is also true:
Suppose: 2k +1<2* is true < P(k) inductive hypothesis
2(k+1) +1 <2k1 & Plk+])
Now  2(k+1)+1 =2k+3 = (2k+1) +2 by multiplying out and regrouping

and by substitution from the inductive hypothesis
(2k +1)+2 < 2k +2k because 2k + 1 < 2k by the inductive hypothesis
and because 2 < 2k for all integers k > 2

W 2k+3 < 2 2k= 2k

[This is what we needed to show.]
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Proving a Property of a Sequence

Example
Define a sequence a,, a,, a; . .. as follows:
D a =2 v
5 W = Sa for all integers k > 2.

Write the first four terms of the sequence.

-1 6 -
' ~hn.C = 2=
a1=2—_——;2§

a, = 5a2_1 - 5611 =52 = 10
as = 5613_1 =56lz =5-10=50
dyg = 5a4_1 - 5a3= 5-50 = 250

= The terms of the sequence satisfy the equation a,= 2 - 51

24



Proving a Property of a Sequence

Example
Prove this property:
a, =2 -5 for all integers n > 1
Basis Step:  Show that P(1) is true. a,;=2-5"1-1=2-50-1=2

Inductive Step:  Show that for all integers k > 1, if P(k) is true then P(k + 1) is also true:

Suppose: a, = 2-5¢1 & P(k) inductive hypothesis
@ %2.5@ & Plk+1)
= SA(kr1)-1 by definition of a4, a5, a5 . ..
= Sak

=5.(2.5%1) by the hypothesis
=2 (5.5
=2 .5k

[This is what we needed to show.]

25
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Induction Versus Deduction Reasoning

Deduction Reasoning

If Every man is person and
Sami is Man,
then Sami is Person

If my highest mark this
semester is 82%, then my
average will not be more than
82%

Induction Reasoning

For all integers n > 8, n
cents can be obtained
using 3¢ and 5¢ coins.

We had a quiz each lecture
in the past months, so we
will have a quiz next lecture

27



Induction Versus Deduction Reasoning

Deduction Reasoning

Based on facts, definitions, ,
theorems, laws

Moves from general
observation to specific results

Provides proofs

Induction Reasoning

Based on observation,
past experience, patterns

Moves from specific cases
to create a general rule

Provides conjecture/ «

28



More slides
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More slides from students

Student: Ehab, 2016

Not reviewed or verified
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Example?

prove the folloying Droperty:
for all integerlxz +2x3 + 3x4 + ... + (n)(n+1) = (n)(n+1)(n+2)
h .' — — ’ o 3

basis step : show p(1) is true. P(1): 1x2 = (1)(2)(3)
left-hand side is 1x2 =2 3

right-hand side is (1)(2)(3) =@
3

—> thus p(1) is true
inductive step : Show that for all integers k 2 1, if P(k) is true then P(k + 1) is also true:

~—9 suppose that p(k) is true

p(k) = 1x2 + 2x3+3x4 + ... + (k)(k+1) @ & P(k) inductive hypothesis
n < -

p(k+1)= 1x2 + 2x3 +3x4 + ...+ (k)(k+1) + (k+1)((k+1)+1) :—OL-\—‘) (Ll-l) (Lf 3\
+ .+ (k)(k+1)] (k+1)((k+1)+1)
_S

(kMk+1Nk+2[ + (k+1) (k+2)y(; T
= (k)( +1Mk+2) + 3(k+1)(k+2)

3 3
l:(k+1)(k+2)(k+3)jright siddiis is what we needed to show.]
3

Then p(k) works for all n > 1.

1 CALCULUS with Analytic Geometry, Earl W.Swokwski 31



Examplet

Show that For any integer n > 5, 4n < 2".

basis step : show P(n = 5) is true.
4n = 4x5 = 20, and 2" = 2° = 32.
Since 20 < 32, thus p(n=5) is true

inductive step : Show that for all integers k>0, if p(k) is true then p(pk+1) is true:
suppose p(k) is true for k>5 < P(k) inductive hypothesis

p(k+1): 4(k+ 1) =4k + 4, and, by assumption [4k] + 4 < [2¥] + 4
Since k > 5, then 4 < 32 < 2%, Then we get
2k + 4 < 2k + 2k=
= 2x2k
= 21x2k
= 2k+1

Then 4(k+1) < 21  heide plknd)isteusceded to show.]

1 question taken from this book: CALCULUS with Analytic Geometry, Earl W.Swokwski

32



Examplel

show that For alln > 1, 8" — 3" is divisible by 5.

basis step : show that p(1) is true

81 —_ 31 =

=8-3

= 5 which is clearly divisible by 5.

inductive step : Show that for all integers k>0, if p(k) is true then p(pk+1) is true:
Suppose p(k) is true ( 8k - 3k is divisible by 5) < P(k) inductive hypothesis

8k+1 — 3k+1 =

= 8k+1 _ Ix 8k + Ix8k — Jk+1

= 8k(8 — 3) + 3(8% — 3¥)

= 8K(5) + 3(8k — 3¥)

The first term in 8%(5) + 3(8% — 3%) has 5 as a factor (explicitly), and the second term is divisible
by 5 (by assumption). Since we can factor a 5 out of both terms, then the entire expression,
8%(5) + 3(8% — 3k) = 8k+1 — 3k+1 must be divisible by 5.

[This is what we needed to show.]

1 question taken from this book: CALCULUS with Analytic Geometry, Earl W.Swokwski

33



Examplet

1°+2%+33%+...+n®=n2(n+1)2.show that this equation is true for all integers n >1.
4

Basis step: show that p (1) is true.
Left Side=13=1
Right Side=12(1+1)%=1
4
hence p (1) is true.
Inductive step: Show that for all integers k>0, if p(k) is true then p(pk+1) is true:
suppose that p (k) is true & P(k) inductive hypothesis
13+23+33+ ... +k3+(k+1)3
= k2(k+1)2 +(k+1)3
4
=k?(k+1)2 +4(k+1)3
4 4
=(k+1)2[k2+4k+4]
4
=(k+1)2[(k+2)?]
4
= right side [This is what we needed to show.]

1 question taken from this book: CALCULUS with Analytic Geometry, Earl W.Swokwski

34



Examplel

Prove that for any integer number n>1, n® + 2 n is divisible by 3

Basis Step: show that p (1) is true.
Let n = 1 and calculate n® + 2n
1°+2(1)=3

3 is divisible by 3 ,hence p (1) is true.

Inductive Step: Show that for all integers k>0, if p(k) is true then p(pk+1) is true:
suppose that p (k) is true € P(k) inductive hypothesis

(k+1)%+2(k+1)

=k®*+3k?*+5k+3

=[k3+2k]+[3k?+3k+3]

=3[k3+2k]+3[k2+k+1]

=3[[k3+2k]+k?+k+1]

Hence (k + 1)3 + 2 (k + 1) is also divisible by 3 and therefore statement P(k + 1) is true.

[This is what we needed to show.]

1 question taken from this book: CALCULUS with Analytic Geometry, Earl W.Swokwski
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