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q Part 2: Induction as a Method of Proof/Thinking
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q Part 6: Induction Versus Deduction Thinking
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Mathematical induction is one of the most recently developed
methods of proof in mathematics.

246 Chapter 5 Sequences, Mathematical Induction, and Recursion

5¢

k¢ (k + 1)¢

Remove Add

k¢ (k + 1)¢

5¢
3¢ 3¢

3¢

Replace three 3¢ coins
by two 5¢ coins.

Remove Add

Figure 5.2.2

Principle of Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true:

1. P(a) is true.

2. For all integers k ≥ a, if P(k) is true then P(k + 1) is true.

Then the statement
for all integers n ≥ a, P(n)

is true.

The first known use of mathematical induction occurs in the work of the Italian sci-
entist Francesco Maurolico in 1575. In the seventeenth century both Pierre de Fermat
and Blaise Pascal used the technique, Fermat calling it the “method of infinite descent.”
In 1883 Augustus De Morgan (best known for De Morgan’s laws) described the process
carefully and gave it the name mathematical induction.

To visualize the idea of mathematical induction, imagine an infinite collection of
dominoes positioned one behind the other in such a way that if any given domino falls
backward, it makes the one behind it fall backward also. (See Figure 5.2.3) Then imagine
that the first domino falls backward. What happens? . . . They all fall down!
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Figure 5.2.3 If the kth domino falls backward, it pushes the (k + 1)st domino backward also.

To see the connection between this image and the principle of mathematical induction,
let P(n) be the sentence “The nth domino falls backward.” It is given that for each k ≥ 1,
if P(k) is true (the kth domino falls backward), then P(k + 1) is also true (the (k + 1)st
domino falls backward). It is also given that P(1) is true (the first domino falls backward).
Thus by the principle of mathematical induction, P(n) (the nth domino falls backward)
is true for every integer n ≥ 1.
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The idea:
If the kth domino falls backward, 
it pushes the (k+1)st domino 
backward.

What is Mathematical Induction
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Example: 
how to know whether this P(n) can be true? 
P(n): For all integers n ≥ 8, n cents can be obtained using 3¢ and 5¢ coins. 
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Even more formally:

For all integers n ≥ 8, P(n) is true, where P(n) is the sentence
“n cents can be obtained using 3c/ and 5c/ coins.”

You could check that P(n) is true for a few particular values of n, as is done in the table
below.

Number of Cents How to Obtain It

8c/ 3c/ + 5c/

9c/ 3c/ + 3c/ + 3c/

10c/ 5c/ + 5c/

11c/ 3c/ + 3c/ + 5c/

12c/ 3c/ + 3c/ + 3c/ + 3c/

13c/ 3c/ + 5c/ + 5c/

14c/ 3c/ + 3c/ + 3c/ + 5c/

15c/ 5c/ + 5c/ + 5c/

16c/ 3c/ + 3c/ + 5c/ + 5c/

17c/ 3c/ + 3c/ + 3c/ + 3c/ + 5c/

The cases shown in the table provide inductive evidence to support the claim that
P(n) is true for general n. Indeed, P(n) is true for all n ≥ 8 if, and only if, it is possible
to continue filling in the table for arbitrarily large values of n.

The kth line of the table gives information about how to obtain kc/ using 3c/ and 5c/
coins. To continue the table to the next row, directions must be given for how to obtain
(k + 1)c/ using 3c/ and 5c/ coins. The secret is to observe first that if kc/ can be obtained
using at least one 5c/ coin, then (k + 1)c/ can be obtained by replacing the 5c/ coin by two
3c/ coins, as shown in Figure 5.2.1.

k¢ (k + 1)¢

3¢ 3¢5¢

Replace a 5¢ coin by
two 3¢ coins.

Remove Add

Figure 5.2.1

If, on the other hand, kc/ is obtained without using a 5c/ coin, then 3c/ coins are used
exclusively. And since the total is at least 8c/, three or more 3c/ coins must be included.
Three of the 3c/ coins can be replaced by two 5c/ coins to obtain a total of (k + 1)c/, as
shown in Figure 5.2.2.

The structure of the argument above can be summarized as follows: To show that
P(n) is true for all integers n ≥ 8, (1) show that P(8) is true, and (2) show that the truth
of P(k + 1) follows necessarily from the truth of P(k) for each k ≥ 8.

Any argument of this form is an argument by mathematical induction. In general,
mathematical induction is a method for proving that a property defined for integers n is
true for all values of n that are greater than or equal to some initial integer.
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How to know whether this statement can be true?

For all integers n ≥ 8, n cents can be obtained using 3¢ and 5¢ coins. 

For all integers n ≥ 8, P(n) is true,
where P(n) is the sentence “n cents 
can be obtained using 3¢ and 5¢ 
coins.”

Then we need to prove that P(n+1) is 
also true 

What is Mathematical Induction
Example
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Proving a statement by mathematical induction is a two-step process. 
The first step is called the basis step, and the second step is called the 
inductive step.

5.2 Mathematical Induction I 247

The validity of proof by mathematical induction is generally taken as an axiom.
That is why it is referred to as the principle of mathematical induction rather than as a
theorem. It is equivalent to the following property of the integers, which is easy to accept
on intuitive grounds:

Suppose S is any set of integers satisfying (1) a ∈ S, and (2) for all
integers k ≥ a, if k ∈ S then k + 1 ∈ S. Then S must contain every integer
greater than or equal to a.

To understand the equivalence of this formulation and the one given earlier, just let S be
the set of all integers for which P(n) is true.

Proving a statement by mathematical induction is a two-step process. The first step is
called the basis step, and the second step is called the inductive step.

Method of Proof by Mathematical Induction

Consider a statement of the form, “For all integers n ≥ a, a property P(n) is true.”
To prove such a statement, perform the following two steps:
Step 1 (basis step): Show that P(a) is true.

Step 2 (inductive step): Show that for all integers k ≥ a, if P(k) is true then
P(k + 1) is true. To perform this step,

suppose that P(k) is true, where k is any
particular but arbitrarily chosen integer with k ≥ a.

[This supposition is called the inductive hypothesis.]
Then

show that P(k + 1) is true.

Here is a formal version of the proof about coins previously developed informally.

Proposition 5.2.1

For all integers n ≥ 8, nc/ can be obtained using 3c/ and 5c/ coins.

Proof (by mathematical induction):

Let the property P(n) be the sentence

nc/ can be obtained using 3c/ and 5c/ coins. ← P(n)

Show that P(8) is true:
P(8) is true because 8c/ can be obtained using one 3c/ coin and one 5c/ coin.

Show that for all integers k ≥ 8, if P(k) is true then P(k+1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 8. That is:]
Suppose that k is any integer with k ≥ 8 such that

kc/ can be obtained using 3c/ and 5c/ coins. ← P(k)
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

(k + 1)c/ can be obtained using 3c/ and 5c/ coins. ← P(k + 1)

Case 1 (There is a 5c/ coin among those used to make up the kc/.): In this case
replace the 5c/ coin by two 3c/ coins; the result will be (k + 1)c/.

continued on page 248
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Mathematical Induction as a Method of Proof 
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Mathematical Induction as a Method of Proof 
Example

How to know whether this statement can be true?
For all integers n ≥ 8, n cents can be obtained using 3¢ and 5¢ coins. 

Show for all integers k ≥ 8, if P(k) is true then P(k+1) is true: 

Case 1 (There is a 5¢ coin among those used to make up the k¢):
replace the 5c/ coin by two 3c/ coins; the result will be (k + 1)c/. 

Case 2 (There is not a 5¢ coin among those used to make up the k ¢): 

Let the property P(n) be the sentence:  n¢ can be obtained using 3¢ and 5¢ coins. ← P(n)

P(8) is true as 8¢ obtained by one 3¢ and one 5¢
Step 2(inductive step):

Step 1 (basis step):Show P(8) is true: 

[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 8. That is:] 
Suppose k   is any integer k ≥ 8,  k¢ obtained by 3¢ and 5¢ . ← P(k) inductive hypothesis 

[We must show that P(k + 1) is true. That is:] We must show that
(k + 1) ¢ / can be obtained using 3 ¢ / and 5 ¢ / coins. ← P(k + 1) 

because k ≥ 8, at least three 3¢ must have been used. So remove 
three 3¢ and replace them by two 5¢; the result will be (k + 1)¢. 

Thus in either case (k + 1)¢ can be obtained using 3¢ and 5¢ [as was to be shown]. 



10,

5.2&3 Mathematical Induction

In this lecture:
q Part 1: What is Mathematical Induction
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Who can sum all numbers from 1 to 100?
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The story is told that one of the greatest mathematicians of all time, Carl Friedrich
Gauss (1777–1855), was given the problem of adding the numbers from 1 to 100 by his
teacher when he was a young child. The teacher had asked his students to compute the
sum, supposedly to gain himself some time to grade papers. But after just a few moments,
Gauss produced the correct answer. Needless to say, the teacher was dumbfounded. How
could young Gauss have calculated the quantity so rapidly? In his later years, Gauss
explained that he had imagined the numbers paired according to the following schema.

1 2 3 . . . . . . 50 51 . . . . . . 98 99 100

→ →

sum is 101
→ →

sum is 101

→ →

sum is 101

→ →

sum is 101

The sum of the numbers in each pair is 101, and there are 50 pairs in all; hence the total
sum is 50 ·101 = 5,050.

• Definition Closed Form

If a sum with a variable number of terms is shown to be equal to a formula that does
not contain either an ellipsis or a summation symbol, we say that it is written in
closed form.

For example, writing 1 + 2 + 3 + · · · + n = n(n + 1)

2
expresses the sum 1 + 2 +

3 + · · · + n in closed form.

Example 5.2.2 Applying the Formula for the Sum of the First n Integers

a. Evaluate 2 + 4 + 6 + · · · + 500.

b. Evaluate 5 + 6 + 7 + 8 + · · · + 50.

c. For an integer h ≥ 2, write 1 + 2 + 3 + · · · + (h − 1) in closed form.

Solution

a. 2 + 4 + 6 + · · · + 500 = 2 ·(1 + 2 + 3 + · · · + 250)

= 2 ·
(

250 ·251
2

)
by applying the formula for the sum
of the first n integers with n = 250

= 62,750.

b. 5 + 6 + 7 + 8 + · · · + 50 = (1 + 2 + 3 + · · · + 50)− (1 + 2 + 3 + 4)

= 50 ·51
2

− 10 by applying the formula for the sum
of the first n integers with n = 50

= 1,265

c. 1 + 2 + 3 + · · · + (h − 1) = (h − 1) · [(h − 1) + 1]
2

by applying the formula for the sum
of the first n integers with
n = h − 1

= (h − 1) ·h
2

since (h − 1) + 1 = h. ■
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Sum of the First n Integers
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Theorem 5.2.2 Sum of the First n Integers 
For all integers n ≥ 1,

Same Question: Prove that these programs prints the same results in case n ≥ 1
For (i=1, i=<n; i++)

S=S+i;
Print (“%d”,S);

S=(n(n+1))/2
Print (“%d”,S);
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Theorem 5.2.2 Sum of the First n Integers 
For all integers n ≥ 1,

Same Question: Prove that these programs prints the same results in case n ≥ 1
For (i=1, i=<n; i++)

S=S+i;
Print (“%d”,S);

S=(n(n+1))/2
Print (“%d”,S);

Proving that both programs produce the same results is like proving that:
← P(n) 

P(1): 1  =  1(1+1)/2 = Thus P(1) is true Show that P(1) is true.Basis Step:

Inductive Step: Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is also true: 

Suppose:  1+2+3+…+k = k(k+1)/2 is true ← P(k) inductive hypothesis

P(k+1) = 1+2+…+k + (k+1) = (k+1)(k+2) /2
= P(k) + (k+1)

← P(k+1)
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Examples of Sums

Evaluate 2 + 4 + 6 + ··· + 500.

Evaluate 5 + 6 + 7 + 8 + ··· + 50.

For an integer h ≥ 2, write 1 + 2 + 3 + ··· + (h−1) in closed form.
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k+1∑

i=0

r i = r (k+1)+1 − 1
r − 1

,

or, equivalently,

k+1∑

i=0

r i = rk+2 − 1
r − 1

· ← to show (P(k + 1))

In the inductive step for this proof we use another common technique for showing
that an equation is true: We start with the left-hand side and transform it step-by-step
into the right-hand side using the inductive hypothesis together with algebra and other
known facts.

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer n ≥ 0,
n∑

i=0

r i = rn+1 − 1
r − 1

.

Proof (by mathematical induction):

Suppose r is a particular but arbitrarily chosen real number that is not equal to 1,
and let the property P(n) be the equation

n∑

i = 0

r i = r i+1 − 1
r − 1

← P(n)

We must show that P(n) is true for all integers n ≥ 0. We do this by mathematical
induction on n.

Show that P(0) is true:

To establish P(0), we must show that

0∑

i = 0

r i = r0 + 1 − 1
r − 1

← P(0)

The left-hand side of this equation is r0 = 1 and the right-hand side is

r0 + 1 − 1
r − 1

= r − 1
r − 1

= 1

also because r1 = r and r $= 1. Hence P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 0. That is:]
Let k be any integer with k ≥ 0, and suppose that

k∑

i = 0

r i = rk + 1 − 1
r − 1

← P(k)

inductive hypothesis

continued on page 254
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k+1∑

i=0

r i = r (k+1)+1 − 1
r − 1

,

or, equivalently,

k+1∑

i=0

r i = rk+2 − 1
r − 1

· ← to show (P(k + 1))

In the inductive step for this proof we use another common technique for showing
that an equation is true: We start with the left-hand side and transform it step-by-step
into the right-hand side using the inductive hypothesis together with algebra and other
known facts.

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer n ≥ 0,
n∑

i=0

r i = rn+1 − 1
r − 1

.

Proof (by mathematical induction):

Suppose r is a particular but arbitrarily chosen real number that is not equal to 1,
and let the property P(n) be the equation

n∑

i = 0

r i = r i+1 − 1
r − 1

← P(n)

We must show that P(n) is true for all integers n ≥ 0. We do this by mathematical
induction on n.

Show that P(0) is true:

To establish P(0), we must show that

0∑

i = 0

r i = r0 + 1 − 1
r − 1

← P(0)

The left-hand side of this equation is r0 = 1 and the right-hand side is

r0 + 1 − 1
r − 1

= r − 1
r − 1

= 1

also because r1 = r and r $= 1. Hence P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 0. That is:]
Let k be any integer with k ≥ 0, and suppose that

k∑

i = 0

r i = rk + 1 − 1
r − 1

← P(k)

inductive hypothesis

continued on page 254
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[We must show that P(k + 1) is true. That is:] We must show that
k+1∑

i= 0

r i = r (k + 1)+ 1 − 1
r − 1

,

or, equivalently, that

k + 1∑

i = 0

r i = rk + 2 − 1
r − 1

. ← P(k + 1)

[We will show that the left-hand side of P(k + 1) equals the right-hand side.]
The left-hand side of P(k + 1) is

k+1∑

i= 0

r i =
k∑

i= 0

r i + rk+1 by writing the (k + 1)st term
separately from the first k terms

= rk+1 − 1
r − 1

+ rk+1 by substitution from the
inductive hypothesis

= rk+1 − 1
r − 1

+ rk+1(r − 1)

r − 1

by multiplying the numerator and denominator
of the second term by (r − 1) to obtain a
common denominator

= (rk+1 − 1) + rk+1(r − 1)

r − 1
by adding fractions

= rk+1 − 1 + rk+2 − rk+1

r − 1
by multiplying out and using the fact
that rk+1 ·r = rk+1 ·r1 = rk+2

= rk+2 − 1
r − 1

by canceling the rk+1’s.

which is the right-hand side of P(k + 1) [as was to be shown.]
[Since we have proved the basis step and the inductive step, we conclude that the theorem
is true.]

Proving an Equality
The proofs of the basis and inductive steps in Examples 5.2.1 and 5.2.3 illustrate two
different ways to show that an equation is true: (1) transforming the left-hand side and
the right-hand side independently until they are seen to be equal, and (2) transforming
one side of the equation until it is seen to be the same as the other side of the equation.

Sometimes people use a method that they believe proves equality but that is
actually invalid. For example, to prove the basis step for Theorem 5.2.3, they perform
the following steps:

!
Caution! Don’t do this!

0∑

i = 0

r i = r0 + 1 − 1
r − 1

r0 = r1 − 1
r − 1

1 = r − 1
r − 1

1 = 1

The problem with this method is that starting from a statement and deducing a true con-
clusion does not prove that the statement is true. A true conclusion can also be deduced

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

254 Chapter 5 Sequences, Mathematical Induction, and Recursion

[We must show that P(k + 1) is true. That is:] We must show that
k+1∑

i= 0

r i = r (k + 1)+ 1 − 1
r − 1

,

or, equivalently, that

k + 1∑

i = 0

r i = rk + 2 − 1
r − 1

. ← P(k + 1)

[We will show that the left-hand side of P(k + 1) equals the right-hand side.]
The left-hand side of P(k + 1) is

k+1∑

i= 0

r i =
k∑

i= 0

r i + rk+1 by writing the (k + 1)st term
separately from the first k terms

= rk+1 − 1
r − 1

+ rk+1 by substitution from the
inductive hypothesis

= rk+1 − 1
r − 1

+ rk+1(r − 1)

r − 1

by multiplying the numerator and denominator
of the second term by (r − 1) to obtain a
common denominator

= (rk+1 − 1) + rk+1(r − 1)

r − 1
by adding fractions

= rk+1 − 1 + rk+2 − rk+1

r − 1
by multiplying out and using the fact
that rk+1 ·r = rk+1 ·r1 = rk+2

= rk+2 − 1
r − 1

by canceling the rk+1’s.

which is the right-hand side of P(k + 1) [as was to be shown.]
[Since we have proved the basis step and the inductive step, we conclude that the theorem
is true.]

Proving an Equality
The proofs of the basis and inductive steps in Examples 5.2.1 and 5.2.3 illustrate two
different ways to show that an equation is true: (1) transforming the left-hand side and
the right-hand side independently until they are seen to be equal, and (2) transforming
one side of the equation until it is seen to be the same as the other side of the equation.

Sometimes people use a method that they believe proves equality but that is
actually invalid. For example, to prove the basis step for Theorem 5.2.3, they perform
the following steps:

!
Caution! Don’t do this!

0∑

i = 0

r i = r0 + 1 − 1
r − 1

r0 = r1 − 1
r − 1

1 = r − 1
r − 1

1 = 1

The problem with this method is that starting from a statement and deducing a true con-
clusion does not prove that the statement is true. A true conclusion can also be deduced

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16,

Examples of Sums of a Geometric Sequence

In each of (a) and (b) below, assume that m is an integer that is 
greater than or equal to 3. Write each of the sums in closed form.

(a)   1+3+32 +···+3m−2 

(b)   32 +33 +34 +···+3m
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Examples of Sums of a Geometric Sequence

In each of (a) and (b) below, assume that m is an integer that is 
greater than or equal to 3. Write each of the sums in closed form.

(a)   1+3+32 +···+3m−2 

(b)   32 +33 +34 +···+3m
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5.2&3 Mathematical Induction

In this lecture:
q Part 1: What is Mathematical Induction
q Part 2 : Induction as a Method of Proof/Thinking
q Part 3: Proving Sum of Integers and Geometric Sequences 
q Part 4: Proving a Divisibility Property and Inequality
q Part 5: Proving a Property of a Sequence 
q Part 6: Induction Versus Deduction Thinking
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The aim is to show that this quantity, 22k·4− 1, is divisible by 3. Why should that be so?
By the inductive hypothesis, 22k − 1 is divisible by 3, and 22k·4− 1 resembles 22k − 1.
Observe what happens, if you subtract 22k − 1 from 22k·4− 1:

22k·4− 1︸ ︷︷ ︸ − (22k − 1)︸ ︷︷ ︸ = 22k·3.︸ ︷︷ ︸
% % %

divisible by 3? divisible by 3 divisible by 3

Adding 22k − 1 to both sides gives

22k·4− 1︸ ︷︷ ︸ = 22k ·3︸ ︷︷ ︸ + 22k − 1.︸ ︷︷ ︸% % %

divisible by 3? divisible by 3 divisible by 3

Both terms of the sum on the right-hand side of this equation are divisible by 3; hence
the sum is divisible by 3. (See exercise 15 of Section 4.3.) Therefore, the left-hand side
of the equation is also divisible by 3, which is what was to be shown.

This discussion is summarized as follows:

Proposition 5.3.1

For all integers n ≥ 0, 22n − 1 is divisible by 3.

Proof (by mathematical induction):

Let the property P(n) be the sentence “22n − 1 is divisible by 3.”

22n − 1 is divisible by 3. ← P(n)

Show that P(0) is true:
To establish P(0), we must show that

22 ·0 − 1 is divisible by 3. ← P(0)

But

22 ·0 − 1 = 20 − 1 = 1− 1 = 0

and 0 is divisible by 3 because 0 = 3 ·0. Hence P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 0. That is:]
Let k be any integer with k ≥ 0, and suppose that

22k − 1 is divisible by 3. ← P(k)

inductive hypothesis

By definition of divisibility, this means that

22k − 1 = 3r for some integer r .

[We must show that P(k + 1) is true. That is:] We must show that

22(k + 1) − 1 is divisible by 3. ← P(k + 1)
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Basis Step:

Inductive Step:

← P(n) 3 |  22n− 1

P(0):  22.0 −1=20−1  = 1−1  =  0 As 3 | 0 , thus P(0) is true. 
Show that P(0) is true.

Show that for all integers k ≥ 0, if P(k) is true then P(k + 1) is also true: 

Suppose: 22k − 1 is divisible by 3. ← P(k) inductive hypothesis 

22k − 1 = 3r for some integer r. 
22(k+1)−1 is divisible by 3. ← P(k+1) 

22(k+1)− 1 = 22k + 2 − 1
= 22k ·22 − 1 = 22k ·4 − 1
= 22k (3 + 1) − 1 = 22k · 3 + (22k−1) = 22k · 3 + 3r
= 3(22k+ r )                              Which is integer 

by the laws of exponents 

so, by definition of divisibility, 22(k+1) − 1 is divisible by 3

Proving a Divisibility Property 
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Let P(n) be             2n+1<2n

Basis Step:

Inductive Step:

P(3): 2.3+1 < 23 which is true.Show that P(3) is true.

Suppose:  2k +1<2k is true ← P(k) inductive hypothesis 

2(k+1) +1 < 2k+1 ← P(k+1) 

2k+3 = (2k+1) +2   by algebra

< 2k + 2k as 2k - 1 < 2k by the hypothesis
and because 2 < 2k     (k ≥ 2)

∴ 2k + 3   <   2 · 2k = 2k+1

[This is what we needed to show.]

Proving Inequality
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and by substitution from the inductive hypothesis,

(2k + 1) + 2 < 2k + 2. 5.3.2

Hence

2(k + 1) + 1 < 2k + 2 The left-most part of equation (5.3.1) is less
than the right-most part of inequality (5.3.2).

Note Properties of
order are listed in
Appendix A.

If it can be shown that 2k + 2 is less than 2k+1, then the desired inequality will have been
proved. But since the quantity 2k can be added to or subtracted from an inequality without
changing its direction,

2k + 2 < 2k+1 ⇔ 2 < 2k+1 − 2k = 2k(2− 1) = 2k .

And since multiplying or dividing an inequality by 2 does not change its direction,

2 < 2k ⇔ 1 = 2
2

<
2k

2
= 2k−1 by the laws of exponents.

This last inequality is clearly true for all k ≥ 2. Hence it is true that 2(k + 1) + 1 < 2k+1.
This discussion is made more flowing (but less intuitive) in the following formal

proof:

Proposition 5.3.2

For all integers n ≥ 3, 2n + 1 < 2n .

Proof (by mathematical induction):

Let the property P(n) be the inequality

2n + 1 < 2n. ← P(n)

Show that P(3) is true:
To establish P(3), we must show that

2 ·3 + 1 < 23. ← P(3)

But

2 ·3 + 1 = 7 and 23 = 8 and 7 < 8.

Hence P(3) is true.

Show that for all integers k ≥ 3, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k ≥ 3. That is:]
Suppose that k is any integer with k ≥ 3 such that

2k + 1 < 2k . ← P(k)

inductive hypothesis
[We must show that P(k + 1) is true. That is:] We must show that

2(k + 1) + 1 < 2(k+1),

or, equivalently,

2k + 3 < 2(k+1). ← P(k + 1)
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Let P(n) be             2n+1<2n

Basis Step:

Inductive Step:

P(3): 2.3+1 < 23 which is true.Show that P(3) is true.

Show that for all integers k ≥ 3, if P(k) is true then P(k + 1) is also true: 

Suppose:  2k +1<2k is true ← P(k) inductive hypothesis 

2(k+1) +1 < 2k+1 ← P(k+1)

Now      2(k+1)+1 = 2k+3 = (2k+1) +2 by multiplying out and regrouping 

and by substitution from the inductive hypothesis
(2k +1)+2 < 2k +2k   because 2k + 1 < 2k by the inductive hypothesis 

and because 2 < 2k for all integers k ≥ 2 

∴ 2k + 3   <   2 · 2k = 2k+1

[This is what we needed to show.]

Proving Inequality
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5.2&3 Mathematical Induction
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Proving a Property of a Sequence 
Example

Define a sequence a1, a2, a3 . . . as follows:
a1 =  2 
ak =  5ak-1 for all integers k ≥ 2. 

Write the first four terms of the sequence. 

a1 = 2
a2 = 5a2−1 = 5a1 = 5·2 = 10
a3 = 5a3−1 =5a2 = 5·10= 50 
a4 = 5a4−1 = 5a3 = 5·50 = 250

è The terms of the sequence satisfy the equation an= 2 · 5n-1
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Proving a Property of a Sequence 
Example

Prove this property: 
an = 2 ·5n-1 for all integers n ≥ 1

a1 = 2 · 51-1 − 1 = 2 · 50 − 1 = 2Basis Step:

Inductive Step:

Show that P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is also true:

Suppose: ak= 2·5k-1 ← P(k) inductive hypothesis 

ak+1 = 2 . 5k ← P(k+1) 

= 5a(k+1)-1 by definition of a1, a2, a3 . . .

= 5ak

= 5 . (2 . 5k-1)      by the hypothesis

= 2 . (5 . 5k-1)

= 2 . 5k

[This is what we needed to show.]
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Induction Versus Deduction Reasoning 

Deduction Reasoning Induction Reasoning 

We had a quiz each lecture 
in the past months, so we 
will have a quiz next lecture

If my highest mark this 
semester is 82%, then my 
average will not be more than 
82%

If Every man is person and 
Sami is Man, 
then Sami is Person

For all integers n ≥ 8, n 
cents can be obtained 
using 3¢ and 5¢ coins. 
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Induction Versus Deduction Reasoning 

Deduction Reasoning Induction Reasoning 

Based on observation,
past experience, patterns

Based on facts, definitions, , 
theorems,  laws

Moves from specific cases
to create a general rule

Moves from general 
observation to specific results

Provides proofs
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