Set Theory

6.1. Basics of Set Theory

6.2 Properties of Sets and Element Argument

6.3 Algebraic Proofs

6.4 Boolean Algebras

,

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Online Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

,

This lecture is based on (but not limited to) to chapter 5 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Set Theory 6.2 Properties of Sets

In this lecture:

1

D Part 1: Set Relations and Identities

Part 2: Proving Set Identities (Element Argument)
 Part 3: Examples of proving Set Identities

Set Relations

Theorem 6.2.1 Some Subset Relations

1. Inclusion of Intersection: For all sets A and B,

(a) $A \cap B \subseteq A$ and (b) $A \cap B \subseteq B$.

2. Inclusion in Union: For all sets A and B,

1

(a) $A \subseteq A \cup B$ and (b) $B \subseteq A \cup B$.

3. *Transitive Property of Subsets:* For all sets A, B, and C,

if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Procedural Versions of Set Definitions

Let X and Y be subsets of a universal set U and suppose x and y are elements of U.

- 1. $x \in X \cup Y \quad \Leftrightarrow \quad x \in X \text{ or } x \in Y$ 2. $x \in X \cap Y \quad \Leftrightarrow \quad x \in X \text{ and } x \in Y$
- 3. $x \in X Y \quad \Leftrightarrow \quad x \in X \text{ and } x \notin Y$
- 4. $x \in X^c$ \Leftrightarrow $x \notin X$
- 5. $(x,y) \in X \times Y \quad \Leftrightarrow \quad x \in X \text{ and } y \in Y$

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U.

1. Commutative Laws: For all sets A and B,

(a) $A \cup B = B \cup A$ and (b) $A \cap B = B \cap A$.

2. Associative Laws: For all sets A, B, and C,

(a) $(A \cup B) \cup C = A \cup (B \cup C)$ and (b) $(A \cap B) \cap C = A \cap (B \cap C)$.

3. *Distributive Laws:* For all sets, *A*, *B*, and *C*,

(a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

4. *Identity Laws:* For all sets A,

(a) $A \cup \emptyset = A$ and (b) $A \cap U = A$.

5. Complement Laws:

1

(a)
$$A \cup A^c = U$$
 and (b) $A \cap A^c = \emptyset$.

6. Double Complement Law: For all sets A,

 $(A^c)^c = A.$

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U.

6. *Double Complement Law:* For all sets *A*,

 $(A^c)^c = A.$

7. *Idempotent Laws:* For all sets *A*,

(a) $A \cup A = A$ and (b) $A \cap A = A$.

8. Universal Bound Laws: For all sets A,

(a) $A \cup U = U$ and (b) $A \cap \emptyset = \emptyset$.

9. De Morgan's Laws: For all sets A and B,

(a) $(A \cup B)^c = A^c \cap B^c$ and (b) $(A \cap B)^c = A^c \cup B^c$.

10. Absorption Laws: For all sets A and B,

(a) $A \cup (A \cap B) = A$ and (b) $A \cap (A \cup B) = A$.

11. Complements of U and \emptyset :

(a) $U^c = \emptyset$ and (b) $\emptyset^c = U$.

12. Set Difference Law: For all sets A and B,

 $A - B = A \cap B^c.$

→ We will prove some of these theories in the lecture, please prove others at home

Set Theory 6.2 Properties of Sets

In this lecture:

1

□ Part 1: Set Relations and Identities

Part 2: Proving Set Identities (Element Argument)
Deart 2: Everyplas of proving Set Identities

Part 3: Examples of proving Set Identities

Proving Set Identities

Proving That Sets Are Equal

e.g., prove: *HumanMale* = *Man*

Basic Method for Proving That Sets Are Equal

Let sets X and Y be given. To prove that X = Y:

1. Prove that $X \subseteq Y$.

2. Prove that $Y \subseteq X$.

1

But: How to prove that $X \subseteq Y$?

The Element Argument Method For Proving a set is a subset of another

e.g., prove: $HumanMale \subseteq Man$

i.e., Prove that every element in HumanMale is an element in Man

The Element Argument Method:

Let sets *X* and *Y* be Given, To Prove that $X \subseteq Y$:

<u>Step 1</u>. Suppose that *x* is a particular but arbitrarily chosen element if *X*.

<u>Step 2</u>. Show that *x* is an element of *Y*.

The Element Argument Method In details

Example: Prove that: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

That is:

Prove: $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$

That is, show $\forall x$, if $x \in A \cup (B \cap C)$ then $x \in (A \cup B) \cap (A \cup C)$

Suppose $x \in A \cup (B \cap C)$. [Show $x \in (A \cup B) \cap (A \cup C)$.]

Thus $x \in (A \cup B) \cap (A \cup C)$.

Hence $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

Prove: $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

That is, show $\forall x$, if $x \in (A \cup B) \cap (A \cup C)$ then $x \in A \cup (B \cap C)$.

```
Suppose x \in (A \cup B) \cap (A \cup C). [Show x \in A \cup (B \cap C).]
```

Thus $x \in A \cup (B \cap C)$.

Hence $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Thus $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$.

Set Theory 6.2 Properties of Sets

In this lecture:

1

Part 1: Set Relations and Identities

Part 2: Proving Set Identities (Element Argument)

Part 3: Examples of proving Set Identities

Proving: A Distributive Law for Sets

Theorem 6.2.2(3)(a) A Distributive Law for Sets

For all sets A, B, and C,

$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C):$

Suppose $x \in A \cup (B \cap C)$. $x \in A$ or $x \in B \cap C$. (by def. of union) <u>Case 1 ($x \in A$):</u> then $x \in A \cup B$ (by def. of union) and $x \in A \cup C$ (by def. of union) $\therefore x \in (A \cup B) \cap (A \cup C)$ (def. of intersection) <u>Case 2 ($x \in B \cap C$):</u> then $x \in B$ and $x \in C$ (def. of intersection) As $x \in B$, $x \in A \cup B$ (by def. of union) As $x \in C$, $x \in A \cup C$, (by def. of union) $\therefore x \in (A \cup B) \cap (A \cup C)$ (def. of intersection)

In both cases, $x \in (A \cup B) \cap (A \cup C)$. **Thus:** $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ by definition of subset

$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$:

Suppose $x \in (A \cup B) \cap (A \cup C)$. $x \in A \cup B$ and $x \in A \cup C$. (def. of intersection) <u>Case 1 ($x \in A$):</u> then $x \in A \cup (B \cap C)$ (by def. of union) <u>Case 2 ($x \notin A$):</u> then $x \in B$ and $x \in C$, (def. of intersection) Then, $x \in B \cap C$ (def. of intersection) $\therefore x \in A \cup (B \cap C)$

In both cases $x \in A \cup (B \cap C)$. **Thus:** $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ by definition of subset,

Conclusion: Since both subset relations have been proved, it follows by definition of set equality that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proving: A De Morgan's Law for Sets

Theorem 6.2.2(9)(a) A De Morgan's Law for Sets

For all sets A and B, $(A \cup B)^c = A^c \cap B^c$

Same As: proving whether: the people who are not students or employees is the same as the people who are either students nor employees.

$(\mathbf{A} \cup \mathbf{B})^{\mathbf{c}} \subseteq \mathbf{A}^{\mathbf{c}} \cap \mathbf{B}^{\mathbf{c}}$

Suppose $x \in (A \cup B)^c$. [We must show that $x \in A^c \cap B^c$.] By definition of complement,

 $x \notin A \cup B$.

But to say that $x \notin A \cup B$ means that

it is false that (x is in A or x is in B).

By De Morgan's laws of logic, this implies that

x is not in A and x is not in B,

which can be written $x \notin A$ and $x \notin B$.

Hence $x \in A^c$ and $x \in B^c$ by definition of complement. It follows, by definition of intersection, that $x \in A^c \cap B^c$ [as was to be shown]. So $(A \cup B)^c \subseteq A^c \cap B^c$ by definition of subset.

,

$\mathbf{A^c} \cap \mathbf{B^c} \subseteq (\mathbf{A} \cup \mathbf{B})^c$

Suppose $x \in A^c \cap B^c$. [We must show that $x \in (A \cup B)^c$.] By definition of intersection, $x \in A^c$ and $x \in B^c$, and by definition of complement,

 $x \notin A$ and $x \notin B$.

In other words, x is not in A and x is not in B.

By De Morgan's laws of logic this implies that

it is false that (x is in A or x is in B),

which can be written

 $x \notin A \cup B$

by definition of union. Hence, by definition of complement, $x \in (A \cup B)^c$ [as was to be shown]. It follows that $A^c \cap B^c \subseteq (A \cup B)^c$ by definition of subset.

Theorem 6.2.3 Intersection and Union with a Subset

For any sets A and B, if $A \subseteq B$, then

(a)
$$A \cap B = A$$
 and (b) $A \cup B = B$.

Proof: If every person is a student, then the set of persons and students are students

Part (a): Suppose A and B are sets with $A \subseteq B$. To show part (a) we must show both that $A \cap B \subseteq A$ and that $A \subseteq A \cap B$. We already know that $A \cap B \subseteq A$ by the inclusion of intersection property. To show that $A \subseteq A \cap B$, let $x \in A$. [We must show that $x \in A \cap B$.] Since $A \subseteq B$, then $x \in B$ also. Hence

 $x \in A$ and $x \in B$, $x \in A \cap B$

and thus

1

 $X \in A \sqcup D$

by definition of intersection [as was to be shown].

prove at home

Theorem 6.2.4 A Set with No Elements Is a Subset of Every Set

If E is a set with no elements and A is any set, then $E \subseteq A$.

Proof by Contradiction:

1

Suppose not. [We take the negation of the theorem and suppose it to be true.] That is, Suppose: E with no elements, and $E \nsubseteq A$. assuming (E $\nsubseteq A$) means there *x* ∈ E and this x ∉ A [by definition of subset].

But there can be no such element since E has no elements. This is a contradiction.

Hence the supposition that there are sets E and A, where E has no elements and $E \not\subseteq A$, is false, and so the theorem is true.

Proving: Uniqueness of the Empty Set

Corollary 6.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Proof:

1

Suppose E_1 and E_2 are both sets with no elements. By Theorem 6.2.4, $E_1 \subseteq E_2$ since E_1 has no elements. Also $E_2 \subseteq E_1$ since E_2 has no elements. Thus $E_1 = E_2$ by definition of set equality.

Proving: a Conditional Statement

Example: If every student is smart and every smart is not-foolish, then there are no foolish students

Proposition 6.2.6

For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C^c$, then $A \cap C = \emptyset$.

Proof:

1

Suppose not,Suppose there is an element x in $A \cap C$.Then $x \in A$ and $x \in C$ (By definition of intersection).As $A \subseteq B$ then $x \in B$ (by definition of subset).Also, as $B \subseteq C^c$, then $x \in C^c$ (by definition of subset).So, $x \notin C$ (by definition of complement)

Thus, $x \in C$ and $x \notin C$, which is a contradiction.

So the supposition that there is an element x in $A \cap C$ is false, and thus $A \cap C = \emptyset$ [as was to be shown].