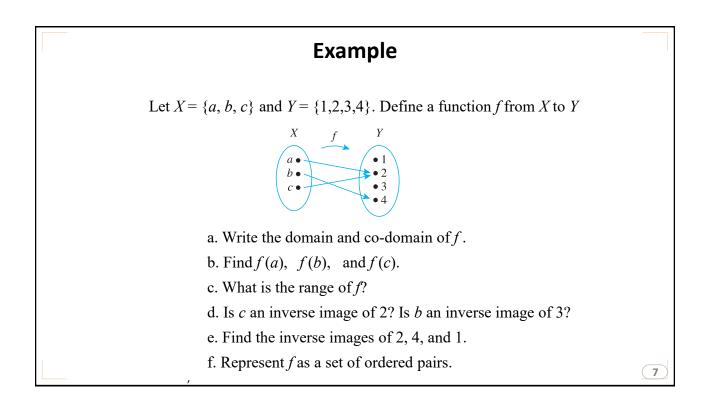
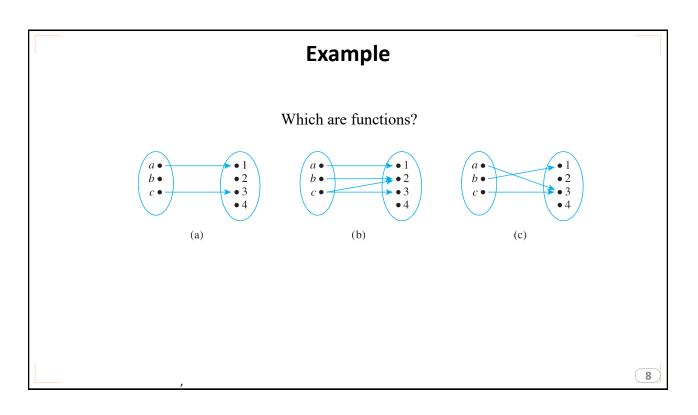
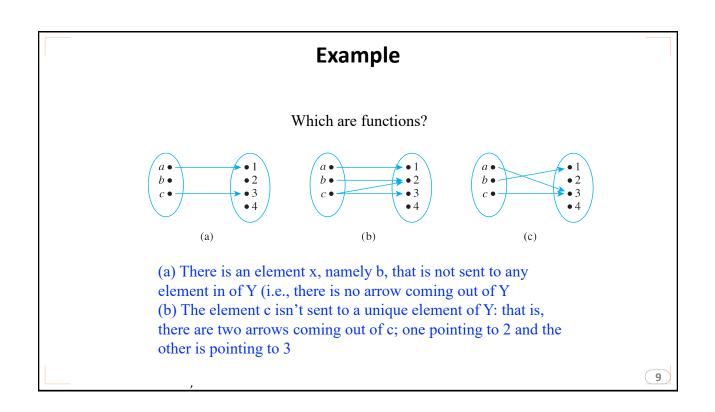
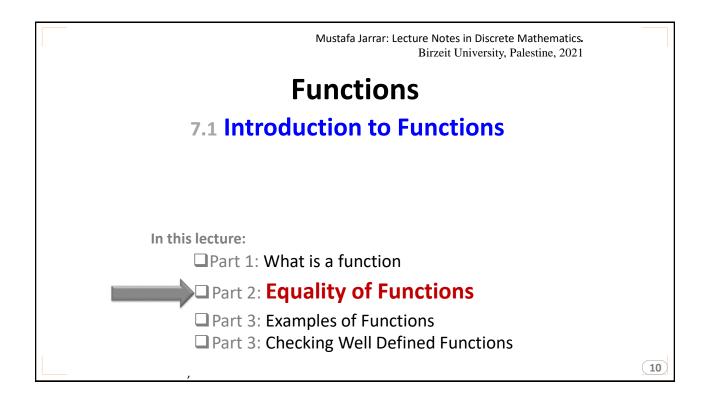


Function Definition
• Definition
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X , the domain , to Y , the co-domain , that satisfies two properties: (1) every element in X is related to some element in Y , and (2) no element in X is related to more than one element in Y . Thus, given any element x in X , there is a unique element in Y that is related to x by f . If we call this element y , then we say that " f sends x to y " or
" <i>f</i> maps <i>x</i> to <i>y</i> " and write $x \xrightarrow{f} y$ or $f: x \rightarrow y$. The unique element to which <i>f</i> sends <i>x</i> is denoted
f(x) and is called f of x , or the output of f for the input x , or the value of f at x , or the image of x under f .
The set of all values of f taken together is called the <i>range of f</i> or the <i>image of X under f</i> . Symbolically,
range of f = image of X under $f = \{y \in Y \mid y = f(x), \text{ for some } x \text{ in } X\}.$
Given an element y in Y, there may exist elements in X with y as their image. If $f(x) = y$, then x is called a preimage of y or an inverse image of y . The set of all inverse images of y is called <i>the inverse image of</i> y. Symbolically,
the inverse image of $y = \{x \in X \mid f(x) = y\}.$









(11

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example:

Let $J_3 = \{0, 1, 2\}$, and define functions *f* and *g* from J_3 to J_3 as follows: For all *x* in J_3

 $f(x) = (x^2 + x + 1) \mod 3$ and $g(x) = (x + 2)^2 \mod 3$.

Does f = g?

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example:

Let $J_3 = \{0, 1, 2\}$, and define functions f and g from J_3 to J_3 as follows: For all x in J_3

 $f(x) = (x^2 + x + 1) \mod 3$ and $g(x) = (x + 2)^2 \mod 3$.

Does f = g?

x	$x^2 + x + 1$	$f(x) = (x^2 + x + 1) \mod 3$	$(x+2)^2$	$g(x) = (x+2)^2 \mod 3$
0	1	$1 \mod 3 = 1$	4	$4 \mod 3 = 1$
1	3	$3 \mod 3 = 0$	9	$9 \mod 3 = 0$
2	7	$7 \mod 3 = 1$	16	$16 \mod 3 = 1$

Equal functions in reality?

(12

Equality of FunctionsTheorem 7.1.1 A Test for Function EqualityIf $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x)
for all $x \in X$.**Example:**Let $F: \mathbf{R} \to \mathbf{R}$ and $G: \mathbf{R} \to \mathbf{R}$ be functions. Define new functions
 $F + G: \mathbf{R} \to \mathbf{R}$ and $G + F: \mathbf{R} \to \mathbf{R}$ as follows: For all $x \in \mathbf{R}$,
(F + G)(x) = F(x) + G(x) and (G + F)(x) = G(x) + F(x).Does F + G = G + F?

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example:

Let $F: \mathbf{R} \to \mathbf{R}$ and $G: \mathbf{R} \to \mathbf{R}$ be functions. Define new functions $F + G: \mathbf{R} \to \mathbf{R}$ and $G + F: \mathbf{R} \to \mathbf{R}$ as follows: For all $x \in \mathbf{R}$,

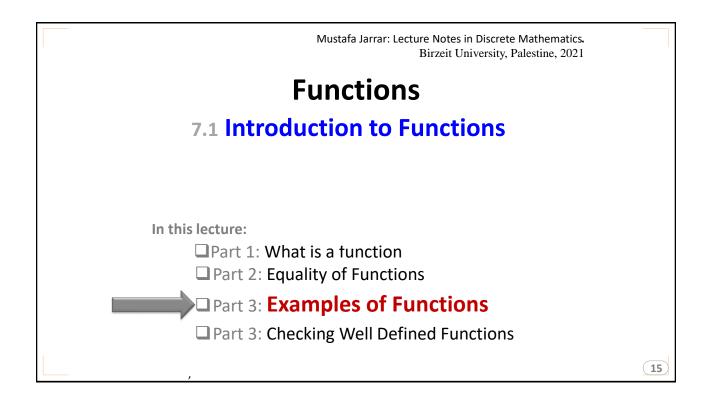
(F+G)(x) = F(x) + G(x) and (G+F)(x) = G(x) + F(x).

Does F + G = G + F?

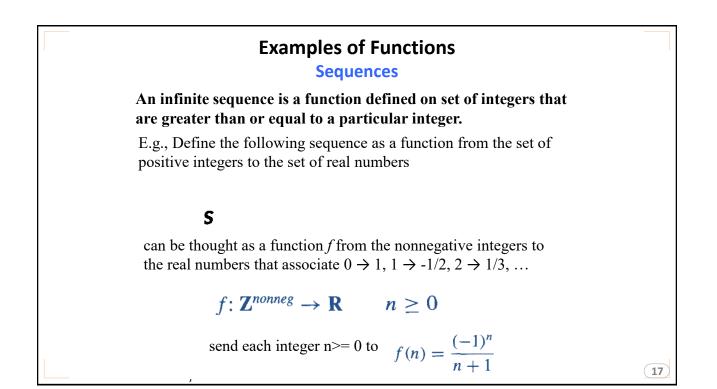
(F+G)(x) = F(x) + G(x) by definition of F+G= G(x) + F(x) by the commutative law for addition of real numbers = (G+F)(x) by definition of G+F

Hence F + G = G + F.

7



Examples of Functions Identity Function
$I_X(x) = x$ for all x in X.
Identity function send each element of X to the element that is identical to it
E.g., $I_x(y) = y$
E.g., Let X be any set and suppose that a_{ij}^{k} and $\varphi(z)$ are elements of X. Find $I_x(a_{ij}^{k})$ and $I_x(\varphi(z))$ Sol. Whatever is input to the identity function comes out unchanged. So, $I_x(a_{ij}^{k}) = a_{ij}^{k}$ and
$I_{x}(\phi(z)) = \phi(z) $ (16)



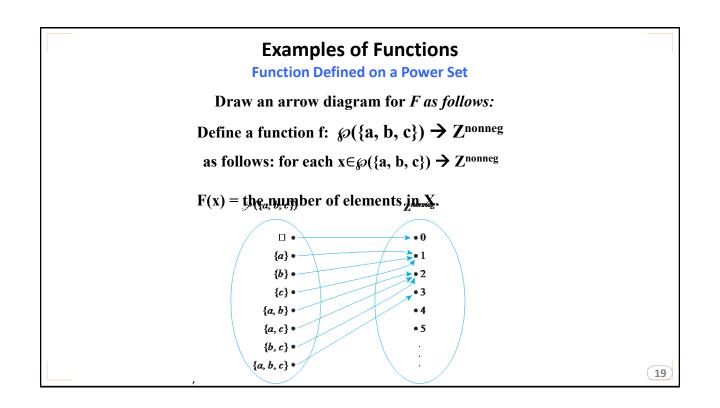
Examples of Functions

Function Defined on a Power Set

Draw an arrow diagram for *F* as follows: Define a function f: $\wp(\{a, b, c\}) \rightarrow \mathbb{Z}^{nonneg}$

as follows: for each $x \in \wp(\{a, b, c\}) \rightarrow Z^{nonneg}$

F(x) = the number of elements in X.



Examples of Functions

Cartesian product

Define functions $M: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $R: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ as follows: For all ordered pairs (a, b) of integers,

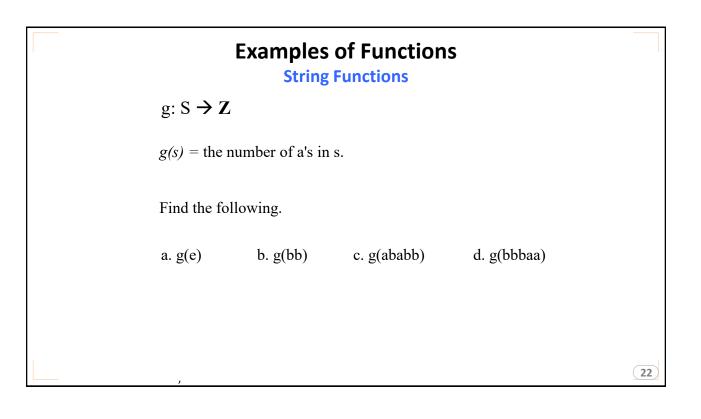
M(a, b) = ab and R(a, b) = (-a, b).

M is the multiplication function that sends each pair of real numbers to the product of the two. R is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

Find the following:

a. M(-1, -1)b. $M\left(\frac{1}{2}, \frac{1}{2}\right)$ c. $M(\sqrt{2}, \sqrt{2})$ d. R(2, 5)e. R(-2, 5)f. R(3, -4)

Ex	xamples of Fund Cartesian produ		
Define functions $M: \mathbf{R} \times$ pairs (a, b) of integers,	$\mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} $	$\mathbf{x} \times \mathbf{R}$ as follows: For all ordered	
Μ	R(a,b) = ab and $R(a,b) =$	= (-a, b).	
of the two. R is the reflec	nction that sends each pair o tion function that sends each eal numbers to the mirror im		
Find the following:			
a. <i>M</i> (-1, -1) d. <i>R</i> (2, 5)	b. $M\left(\frac{1}{2}, \frac{1}{2}\right)$ e. $R(-2, 5)$	c. $M(\sqrt{2}, \sqrt{2})$ f. $R(3, -4)$	
a. $(-1)(-1) = 1$ d. $(-2, 5)$	b. $(1/2)(1/2) = 1/4$ e. $(-(-2), 5) = (2, 5)$	c. $\sqrt{2} \cdot \sqrt{2} = 2$ f. (-3, -4)	
,			21



23

Examples of Functions

Logarithmic functions

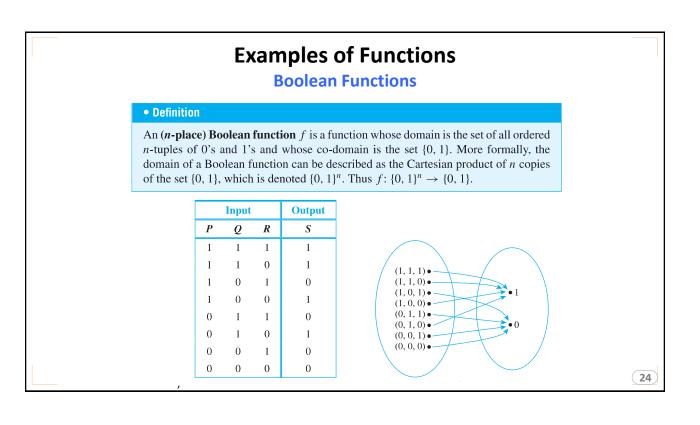
Definition Logarithms and Logarithmic Functions

Let *b* be a positive real number with $b \models 1$. For each positive real number *x*, the **logarithm with base** *b* **of** *x*, written $\log_b x$, is the exponent to which *b* must be raised to obtain *x*. Symbolically,

 $\log_b x = y \iff b^y = x.$

The logarithmic function with base *b* is the function from \mathbf{R}^+ to \mathbf{R} that takes each positive real number *x* to $\log_b x$.

- $\log_3 9 = 2$ because $3^2 = 9$.
- $\log_2(1/2) = -1$ because $2^{-1} = \frac{1}{2}$.
- $\log_{10}(1) = 0$ because $10^0 = 1$.
- log₂(2^m) = m because the exponent to which 2 must be raised to obtain 2^m is m.
- $2^{\log_2 m} = m$ because $\log_2 m$ is the exponent to which 2 must be raised to obtain *m*.



Examples of Functions

Boolean Functions

Consider the three-place Boolean function defined from the set of all 3-tuples of 0's and 1's to $\{0, 1\}$ as follows: For each triple (x_1, x_2, x_3) of 0's and 1's,

 $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \mod 2.$

Describe f using an input/output table.

25

Examples of Functions

Boolean Functions

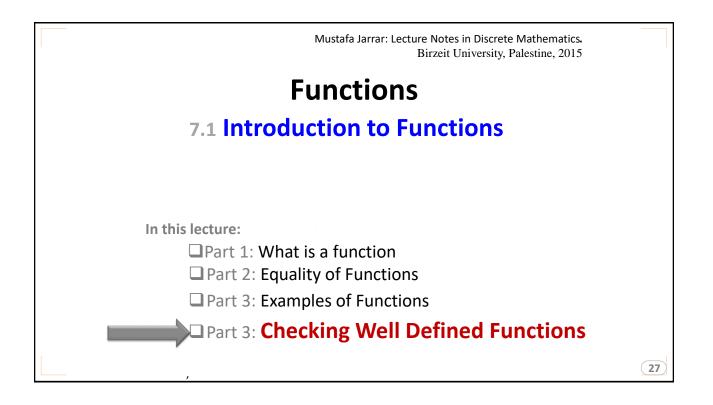
Consider the three-place Boolean function defined from the set of all 3-tuples of 0's and 1's to $\{0, 1\}$ as follows: For each triple (x_1, x_2, x_3) of 0's and 1's,

 $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \mod 2.$

Describe f using an input/output table.

 $f(1, 1, 1) = (1 + 1 + 1) \mod 2 = 3 \mod 2 = 1$ $f(1, 1, 0) = (1 + 1 + 0) \mod 2 = 2 \mod 2 = 0$ and so on to calculate the other values

x_1 x_2 x_3 $(x_1 + x_2 + x_3) \mod 2$ 1 1 1 1 1 1 0 0 1 0 1 0	Output	
1 1 0 0	d 2	
1 0 1 0		
1 0 0 1		
0 1 1 0		
0 1 0 1		
0 0 1 1		
0 0 0 0		



Well-defined Functions

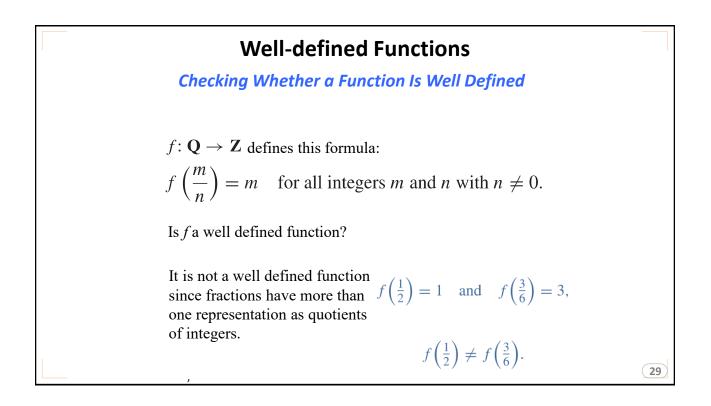
Checking Whether a Function Is Well Defined

A function is not well defined if it fails to satisfy at least one of the requirements of being a function

E.g., Define a function $f : \mathbf{R} \to \mathbf{R}$ by specifying that for all real numbers x, f(x) is the real number y such that $x^2+y^2 = 1$.

There are two reasons why this function is not well defined: For almost all values of x either (1) there is no y that satisfies the given equation or (2) there are two different values of y that satisfy the equation

Consider when x=2 Consider when x=0



Well-defined Functions

Checking Whether a Function or not

Y= BortherOf(x) Y= Parent Of(x) Y= SonOf(x) Y= FatherOf(x) Y= Wife Of(x)