Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2015

Relations

8.1. Introduction to Relations8.2 Properties of Relations8.3 Equivalence Relations

,

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Online Courses at: http://www.jarrar.info

Acknowledgement:

,

This lecture is based on (but not limited to) to chapter 5 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2015

Relations 8.2 **Properties of Relations**

In this lecture:

,

Part 1: Properties: Reflexivity, Symmetry, Transitivity

Part 2: Proving Properties of Relations

Part 3: Transitive Closure

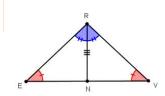
Reflexivity, Symmetry, and Transitivity

- Let R be a relation on a set A.
- 1. *R* is **reflexive** if, and only if, for all $x \in A$, x R x.
- 2. *R* is symmetric if, and only if, for all $x, y \in A$, if x R y then y R x.
- 3. *R* is **transitive** if, and only if, for all $x, y, z \in A$, *if* x R y and y R z then x R z.

Because of the equivalence of the expressions $x \ R \ y$ and $(x, y) \in R$ for all x and y n A, the reflexive, symmetric, and transitive properties can also be written as follows:

- 1. *R* is reflexive \Leftrightarrow for all x in $A, (x, x) \in R$.
- 2. *R* is symmetric \Leftrightarrow for all *x* and *y* in *A*, *if* $(x, y) \in R$ then $(y, x) \in R$.

3. *R* is transitive \Leftrightarrow for all *x*, *y* and *z* in *A*, *if* $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.



تناظر Reflexivity

R is reflexive \Leftrightarrow for all x in A, $(x, x) \in R$.

R is Reflexive: Each element is related to itself.

علاقة ثنائية على مجموعة ما ، وكل عنصر في المجموعة مرتبط بنفسه في إطار اهذه العلاقة.

R is not reflexive: there is an element *x* in *A* such that x R x [that is, such that $(x, x) \notin R$].

Examples:

1

Likes? LocatedIn? Kills? FreindOf? MemberOf? PartOf? SubSetOf? SameAS? BrotherOf? SonOf? FatherOf? RelativeOf?

تماثل Symmetry

R is symmetric \Leftrightarrow for all *x* and *y* in *A*, *if* $(x, y) \in R$ then $(y, x) \in R$.

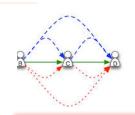
R is Symmetric: If any one element is related to any other element, then the second is related to the first.

R is not Symmetric: there are elements *x* and *y* in *A* such that x R y but $y \xrightarrow{R} x$ [that is, such that $(x, y) \in R$ but $(y,x) \notin R$].

Examples:

,

Likes? LocatedIn? Kills? FreindOf? MemberOf? PartOf? SubSetOf? SameAS? BrotherOf? SonOf? FatherOf? RelativeOf?



تعدى Transitivity

R is transitive

 $\Leftrightarrow \text{ for all } x, y \text{ and } z \text{ in } A, if (x, y) \in R \text{ and } (y, z) \in R$ then $(x, z) \in R$.

R is Transitive: If any one element is related to a second and that second element is related to a third, then the first element is related to the third.

R is not transitive: there are elements *x*,*y* and *z* in *A* such that *xRy* and *yRz* but x R z [that is, such that $(x,y) \in R$ and $(y,z) \in R$ but $(x, z) \notin R$].

Examples:

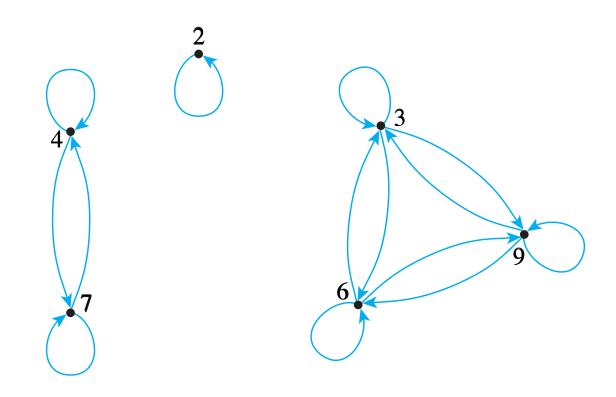
,

Likes? LocatedIn? Kills? FreindOf? MemberOf? PartOf? SubSetOf? SameAS? BrotherOf? SonOf? FatherOf? RelativeOf?

Example

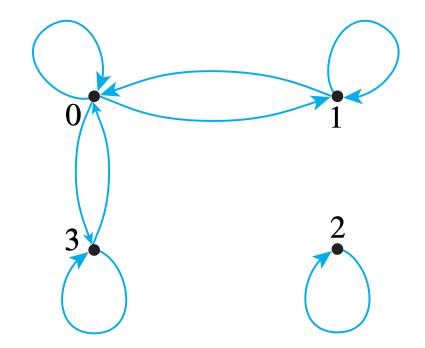
Let $A = \{2,3,4,6,7,9\}$ and define a relation R on A as: For all $x, y \in A, x R y \Leftrightarrow 3 \mid (x-y)$.

1



Is R Reflexive? Symmetric? Transitive?

Let $A = \{0, 1, 2, 3\}$ and define relation R on A as: $R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}$

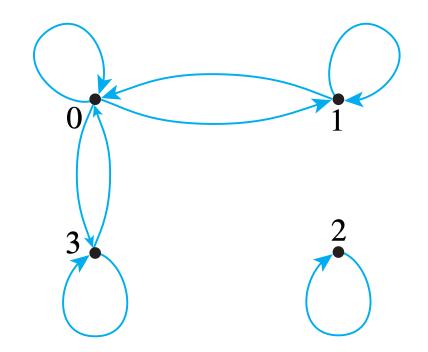


1

Let $A = \{0, 1, 2, 3\}$ and define relation R on A as: $R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}$

Is R Reflexive? Symmetric? Transitive?

10

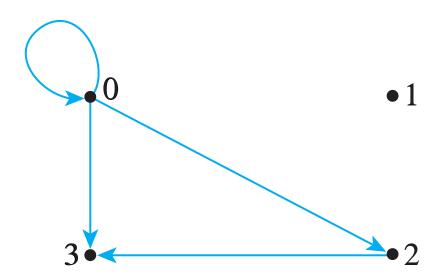


1

Let $A = \{0, 1, 2, 3\}$ and define relation R on A as: $R = \{(0, 0), (0, 2), (0, 3), (2, 3)\}$

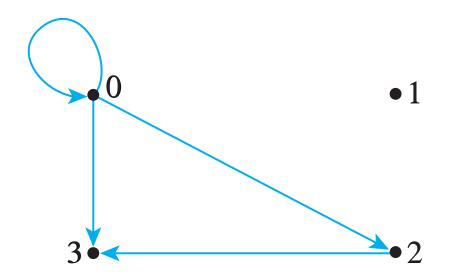
1

Is R Reflexive? 🔀 Symmetric? 🔀 Transitive? 🗹



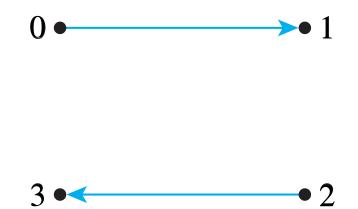
Let $A = \{0, 1, 2, 3\}$ and define relation R on A as: $R = \{(0, 0), (0, 2), (0, 3), (2, 3)\}$

1



Let $A = \{0, 1, 2, 3\}$ and define relation *R* on *A* as: $R = \{(0,1), (2,3)\}$

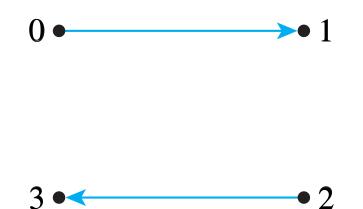
1



Let $A = \{0, 1, 2, 3\}$ and define relation *R* on *A* as: $R = \{(0,1), (2,3)\}$

Is R Reflexive? 🔀 Symmetric? 🔀 Transitive? 🗹

14



T is transitive by default because it is not not transitive!

,

Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2015

Relations 8.2 **Properties of Relations**

In this lecture:

,

Part 1: Properties: Reflexivity, Symmetry, Transitivity

Part 2: Proving Properties of Relations

Part 3: Transitive Closure

Proving Properties on Relations on Infinite Sets

Until Now we discussed relation on Finite Sets

Next, we discussed relation on infinite Sets

To prove a relation is reflexive, symmetric, or transitive, first write down what is to be proved, in **First Order Logic**.

For instance, for symmetry $\forall x, y \in A$, if x R y then y R x.

Then use **<u>direct methods</u>** of proving

Properties of Equality

Define a relation *R* on **R** (the set of all real numbers) as follows: For all real numbers *x* and *y*. $x R y \Leftrightarrow x = y$.

Is R Reflexive? Symmetric? Transitive?

R is reflexive: *R* is reflexive if, and only if, the following statement is true: For all $x \in \mathbb{R}$, $x \in \mathbb{R}$, $x \in \mathbb{R}$, and since $x \in \mathbb{R}$ just means that x = x, this is the same as saying For all $x \in \mathbb{R}$, x=x. Which is true; every real number is equal to it

Properties of Equality

Define a relation *R* on **R** (the set of all real numbers) as follows: For all real numbers *x* and *y*. $x R y \Leftrightarrow x = y$.

Is R Reflexive? Symmetric? Transitive?

R is symmetric: *R* is symmetric if, and only if, the following statement is true: For all $x,y \in \mathbf{R}$, if x R y then y R x.

By definition of *R*, *x R y* means that x = y and *y R x* means that y = x. Hence *R* is symmetric if, and only if, For all $x,y \in \mathbf{R}$, if x=y then y=x.

This statement is true; if one number is equal to a second, then the second is equal to the first.

Properties of Equality

Define a relation *R* on **R** (the set of all real numbers) as follows: For all real numbers *x* and *y*. $x R y \Leftrightarrow x = y$.

Is R Reflexive? Symmetric? Transitive?

R is transitive: *R* is transitive if, and only if, the following statement is true: For all $x,y,z \in \mathbb{R}$, if x R y and y R z then x R z.

By definition of *R*, *x R y* means that x = y, *y R z* means that y = z, and *x R z* means that x = z. Hence *R* is transitive iff the following statement is true: For all $x,y,z \in \mathbf{R}$, **if** x=y and y=z then x=z.

This statement is true: If one real number equals a second and the second equals a third, then the first equals the third.

Properties of Less Than

Define a relation *R* on **R** (the set of all real numbers) as follows: For all $x, y \in R$, $x R y \Leftrightarrow x < y$.

Is R Reflexive? Symmetric? Transitive?

R is not reflexive: *R* is reflexive if, and only if, $\forall x \in \mathbf{R}, x \in \mathbf{R}, x \in \mathbf{R}$. By definition of *R*, this means that $\forall x \in \mathbf{R}, x < x$. But this is false: $\exists x \in \mathbf{R}$ such that $x \not\leq x$. As a counterexample, let x = 0 and note that $0 \neq 0$. Hence *R* is not reflexive.

R is not symmetric: *R* is symmetric if, and only if, $\forall x, y \in \mathbf{R}$, if x R y then y R x. By definition of *R*, this means that $\forall x, y \in \mathbf{R}$, if x < y then y < x. But this is false: $\exists x, y \in \mathbf{R}$ such that x < y and $y \not\leq x$. As a counterexample, let x = 0 and y = 1 and note that 0 < 1 but $1 \neq 0$. Hence *R* is not symmetric.

R is transitive: *R* is transitive if, and only if, for all $x, y, z \in \mathbf{R}$, if x R y and y R z then x R z. By definition of *R*, this means that for all $x, y, z \in \mathbf{R}$, if x < y and y < z, then x < z. But this statement is true by the transitive law of order for real numbers (Appendix A, T18). Hence *R* is transitive.

Properties of Congruence Modulo 3

Define a relation *T* on **Z** (the set of all integers) as follows: For all integers *m* and *n*, $mTn \Leftrightarrow 3|(m-n)$.

Is R <u>Reflexive</u>? Symmetric? Transitive?

For all $m \in \mathbb{Z}$, 3l(m-m).

Suppose *m* is a particular but arbitrarily chosen integer. [We must show that m T m.] Now, m-m = 0. But 3 | 0 since 0 = 3.0. Hence 3l(m-m). Thus, by definition of *T*, *mT m* [as was to be shown].

Properties of Congruence Modulo 3

Define a relation T on Z (the set of all integers) as follows: For all integers m and n, $m T = \frac{1}{2} \frac{2}{m} \frac{n}{m}$

 $m T n \Leftrightarrow 3 \mid (m-n).$

Is R Reflexive? <u>Symmetric?</u> Transitive?

For all $m, n \in \mathbb{Z}$, if 3l(m-n) then 3l(n-m).

Suppose m and n are particular but arbitrarily chosen integers that satisfy the condition m T n.

[We must show that n T m.]

By definition of *T*, since *m T n* then $3 \mid (m - n)$. By definition of "divides," this means that m - n = 3k, for some integer *k*.

Multiplying both sides by -1 gives n - m = 3(-k). Since -k is an integer, this equation shows that $3 \mid (n - m)$. Hence, by definition of T, n T m [as was to be shown].

Properties of Congruence Modulo 3

Define a relation T on Z (the set of all integers) as follows: For all integers m and n, $m T n \bigoplus 2l(m, n)$

 $m T n \Leftrightarrow 3l(m-n).$

Is R Reflexive? Symmetric? <u>Transitive</u>?

For all $m, n \in \mathbb{Z}$, if 3l(m-n) and 3l(n-p) then 3l(m-p).

Suppose *m*, *n*, and *p* are particular but arbitrarily chosen integers that satisfy the condition *m T n* and *n T p*. [We must show that *m T p*.] By definition of T, since *m* T *n* and *n* T *p*, then 3!(m-n) and 3!(n-p). By definition of "divides," this means that m - n = 3r and n - p = 3s, for some integers r and s. Adding the two equations gives (m-n)+(n-p)=3r + 3s, and simplifying gives that m - p = 3(r + s). Since r + s is an integer, this equation shows that 3!(m - p). Hence, by definition of *T*, *m T p* [as was to be shown].

Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2015

Relations 8.2 **Properties of Relations**

In this lecture:

Part 1: Properties: Reflexivity, Symmetry, Transitivity

Part 2: Proving Properties of Relations

Part 3: Transitive Closure

The Transitive Closure of a Relation

The **smallest** transitive relation that contains the relation.

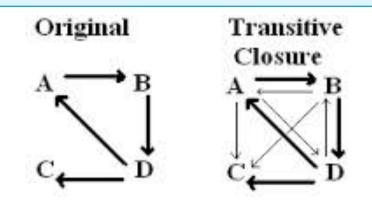
• Definition

Let A be a set and R a relation on A. The **transitive closure** of R is the relation R^t on A that satisfies the following three properties:

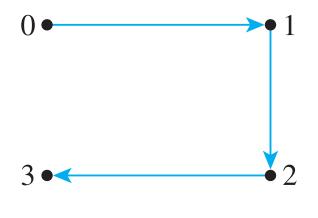
1. R^t is transitive.

,

- 2. $R \subseteq R^t$.
- 3. If *S* is any other transitive relation that contains *R*, then $R^t \subseteq S$.



Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as: $R = \{(0, 1), (1, 2), (2, 3)\}.$ Find the transitive closure of R.



R

1

R^t

Let $A = \{0, 1, 2, 3\}$ and consider the relation *R* defined on *A* as: $R = \{(0, 1), (1, 2), (2, 3)\}.$ Find the transitive closure of *R*.

1

 $R^{t} = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}.$

