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Sets can be partitioned into disjoint sets
�
A partition of a set A is a finite or infinite collection of nonempty, 
mutually disjoint subsets whose union is A. 

Partitioned Sets	

Ai ⋂ Aj = 𝜙, whenever i≠j 	

Ai ⋃A2 ⋃...	⋃  A6 = A 	

460 Chapter 8 Relations

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what

the name is called. The name really is ‘The Aged Aged Man.’ ”
“Then I ought to have said ‘That’s what the song is called’?” Alice corrected

herself.
“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and

Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time completely

bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on a Gate’:

and the tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then, slowly beating
time with one hand, and with a faint smile lighting up his gentle foolish face, as if he
enjoyed the music of his song, he began.
— Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent
forms. For example,

1
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2
4
,

3
6
,
−1
−2

,
−3
−6

,
15
30

, . . . , and so on

are all different ways to represent the same number. They may look different; they may
be called different names; but they are all equal. The idea of grouping together things that
“look different but are really the same” is the central idea of equivalence relations.

The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint
subsets whose union is A. The diagram of Figure 8.3.1 illustrates a partition of a set A by
subsets A1, A2, . . . , A6.

A2

A4 A5

A6

A3

A1
Ai Aj = ∅, whenever i ≠ j
Ai A2  A6 = A 

Figure 8.3.1 A Partition of a Set

• Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: For all x, y ∈ A,

x R y ⇔ there is a subset Ai of the partition
such that both x and y are in Ai .

Example 8.3.1 Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.
Find the relation R induced by this partition.
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Ai ⋂ Aj = 𝜙, whenever i≠j 	

Ai ⋃A2 ⋃...	⋃  A6 = A 	

A relation induced by a partition, is 
a relation between two element in the same 
partition. 
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Example	

8.3 Equivalence Relations 461

Solution Since {0, 3, 4} is a subset of the partition,

0 R 3 because both 0 and 3 are in {0, 3, 4},
3 R 0 because both 3 and 0 are in {0, 3, 4},
0 R 4 because both 0 and 4 are in {0, 3, 4},
4 R 0 because both 4 and 0 are in {0, 3, 4},
3 R 4 because both 3 and 4 are in {0, 3, 4}, and

4 R 3 because both 4 and 3 are in {0, 3, 4}.

Also, 0 R 0 because both 0 and 0 are in {0, 3, 4}
3 R 3 because both 3 and 3 are in {0, 3, 4}, and

4 R 4 because both 4 and 4 are in {0, 3, 4}.
Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in {1},
and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Note These statements
may seem strange, but,
after all, they are not
false!

Hence

R = {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)}. ■

The fact is that a relation induced by a partition of a set satisfies all three properties
studied in Section 8.2: reflexivity, symmetry, and transitivity.

Theorem 8.3.1

Let A be a set with a partition and let R be the relation induced by the partition.
Then R is reflexive, symmetric, and transitive.

Proof:

Suppose A is a set with a partition. In order to simplify notation, we assume that the
partition consists of only a finite number of sets. The proof for an infinite partition
is identical except for notation. Denote the partition subsets by

A1, A2, . . . , An .

Then Ai ∩ A j = ∅ whenever i ̸= j, and A1 ∪ A2 ∪ · · · ∪ An = A. The relation R
induced by the partition is defined as follows: For all x, y ∈ A,

x R y ⇔ there is a set Ai of the partition
such that x ∈ Ai and y ∈ Ai .

[Idea for the proof of reflexivity: For R to be reflexive means that each element of A
is related by R to itself. But by definition of R, for an element x to be related to itself
means that x is in the same subset of the partition as itself. Well, if x is in some subset of
the partition, then it is certainly in the same subset as itself. But x is in some subset of the

continued on page 462
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Let A = {0, 1, 2, 3, 4} and consider the following partition of A:
                                    {0, 3, 4}, {1}, {2}.
          Find the relation R induced by this partition.
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Hence
R = {(0,0),(0,3),(0,4),(1,1),(2,2),(3,0),  
         (3,3),(3,4),(4,0),(4,3),(4,4)}.
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Equivalence Relation
	

è The relation induced by a partition is an 
equivalence relation

Let A be a set and R a relation on A. R is an equivalence relation 
if, and only if, R is reflexive, symmetric, and transitive. 	

Definition	
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Let X be the set of all nonempty subsets of {1, 2, 3}. Then
X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Define a relation R on X as follows: For all A and B in X,
A R B ⇔ the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

Example	

R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}. [We must 
show that A R A.] It is true to say that the least element of A equals 
the least element of A. Thus, by definition of R, A R A. 

R is symmetric: Suppose A and B are nonempty subsets of {1, 2, 3} 
and A R B. [We must show that B R A.] Since A R B, the least 
element of A equals the least element of B. But this implies that the 
least element of B equals the least element of A, and so, by definition 
of R, B R A. 
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Let X be the set of all nonempty subsets of {1, 2, 3}. Then
X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Define a relation R on X as follows: For all A and B in X,
A R B ⇔ the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

Example	

R is transitive: Suppose A, B, and C are nonempty subsets of {1, 2, 
3}, A R B, and B R C. [We must show that A R C.] Since A R B, the 
least element of A equals the least element of B and since B R C, the 
least element of B equals the least element of C. Thus the least 
element of A equals the least element of C, and so, by definition of R, 
A R C. 



15	,	

Let S be the set of all digital circuits with a fixed number n of inputs. 
Define a relation E on S as follows: For all circuits C1 and C2 in S,

Example	

C1 E C2 ⇔ C1 has the same input/output table as C2. 

E is reflexive: Suppose C is a digital logic circuit in S. [We must show 
that C E C.] Certainly C has the same input/output table as itself. Thus, 
by definition of E, C E C	
E is symmetric: Suppose C1 and C2 are digital logic circuits in S such that 
C1 E C2. By definition of E, since C1 E C2, then C1 has the same input/
output table as C2. It follows that C2 has the same input/output table as C1. 
Hence, by definition of E, C2 E C1 	
E is transitive: Suppose C1, C2, and C3 are digital logic circuits in S such 
that C1 E C2 andC2 E C3. By definition of E, since C1  E C2  and C2  E C3, then 
C1 has the same input/output table as C2 and C2 has the same input/output 
table as C3. It follows that C1 has the same input/output table as C3.  
Hence, by definition of E, C1 E C3 	
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Let L be the set of all allowable identifiers in a certain 
computer language, and define a relation R on L as follows: 
For all strings s and t in L, 

Example	

s R t ⇔ the first eight characters of s equal the first eight 
characters of t.

R is reflexive: Let s ∈ L. Clearly s has the same first eight characters as itself. Thus, by 
definition of R, s R s.	

R is symmetric: Let s and t be in L and suppose that s R t.  By definition of R, since s R t, the 
first eight characters of s equal the first eight characters of t. But then the first eight characters 
of t equal the first eight characters of s. And so, by definition of R, t R s	

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. By definition of R, since 
s R t and t R u, the first eight characters of s equal the first eight characters of t, and the first 
eight characters of t equal the first eight characters of u. Hence the first eight characters of s 
equal the first eight characters of u. Thus, by definition of R, s R u
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Equivalence Class	

8.3 Equivalence Relations 465

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show
that s R u.] By definition of R, since s R t and t R u, the first eight characters of s
equal the first eight characters of t , and the first eight characters of t equal the first eight
characters of u. Hence the first eight characters of s equal the first eight characters of u.
Thus, by definition of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L . ■

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of
the set, then one can ask, “What is the subset of all elements that are related to a?” This
subset is called the equivalence class of a.

Note Be careful to
distinguish among the
following: a relation on a
set, the (underlying) set
itself, and the equivalence
class for an element of the
(underlying) set.

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x is related to a by R.

In symbols:

[a] = {x ∈ A | x R a}

When several equivalence relations on a set are under discussion, the notation [a]R is
often used to denote the equivalence class of a under R.

The procedural version of this definition is

for all x ∈ A, x ∈ [a] ⇔ x R a.

Example 8.3.5 Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A = {0, 1, 2, 3, 4} and define a relation R on A as follows:

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.
The directed graph for R is as shown below. As can be seen by inspection, R is an equiv-
alence relation on A. Find the distinct equivalence classes of R.

0

4
1

3

2
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R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show
that s R u.] By definition of R, since s R t and t R u, the first eight characters of s
equal the first eight characters of t , and the first eight characters of t equal the first eight
characters of u. Hence the first eight characters of s equal the first eight characters of u.
Thus, by definition of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L . ■

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of
the set, then one can ask, “What is the subset of all elements that are related to a?” This
subset is called the equivalence class of a.

Note Be careful to
distinguish among the
following: a relation on a
set, the (underlying) set
itself, and the equivalence
class for an element of the
(underlying) set.

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x is related to a by R.

In symbols:

[a] = {x ∈ A | x R a}

When several equivalence relations on a set are under discussion, the notation [a]R is
often used to denote the equivalence class of a under R.

The procedural version of this definition is

for all x ∈ A, x ∈ [a] ⇔ x R a.

Example 8.3.5 Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A = {0, 1, 2, 3, 4} and define a relation R on A as follows:

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.
The directed graph for R is as shown below. As can be seen by inspection, R is an equiv-
alence relation on A. Find the distinct equivalence classes of R.
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Let A = {0,1,2,3,4} and define a relation R on A as :
R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.

Example	

Find the distinct equivalence classes of R.
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Let A = {0,1,2,3,4} and define a relation R on A as :
R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.

Example	

Find the distinct equivalence classes of R.

8.3 Equivalence Relations 465

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show
that s R u.] By definition of R, since s R t and t R u, the first eight characters of s
equal the first eight characters of t , and the first eight characters of t equal the first eight
characters of u. Hence the first eight characters of s equal the first eight characters of u.
Thus, by definition of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L . ■

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of
the set, then one can ask, “What is the subset of all elements that are related to a?” This
subset is called the equivalence class of a.

Note Be careful to
distinguish among the
following: a relation on a
set, the (underlying) set
itself, and the equivalence
class for an element of the
(underlying) set.

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x is related to a by R.

In symbols:

[a] = {x ∈ A | x R a}

When several equivalence relations on a set are under discussion, the notation [a]R is
often used to denote the equivalence class of a under R.

The procedural version of this definition is

for all x ∈ A, x ∈ [a] ⇔ x R a.

Example 8.3.5 Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A = {0, 1, 2, 3, 4} and define a relation R on A as follows:

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.
The directed graph for R is as shown below. As can be seen by inspection, R is an equiv-
alence relation on A. Find the distinct equivalence classes of R.
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Solution First find the equivalence class of every element of A.

[0] = {x ∈ A | x R 0} = {0, 4}
[1] = {x ∈ A | x R 1} = {1, 3}
[2] = {x ∈ A | x R 2} = {2}
[3] = {x ∈ A | x R 3} = {1, 3}
[4] = {x ∈ A | x R 4} = {0, 4}

Note that [0] = [4] and [1] = [3]. Thus the distinct equivalence classes of the relation are

{0, 4}, {1, 3}, and {2}. ■

When a problem asks you to find the distinct equivalence classes of an equivalence
relation, you will generally solve the problem in two steps. In the first step you either
explicitly construct (as in Example 8.3.5) or imagine constructing (as in infinite cases)
the equivalence class for every element of the domain A of the relation. Usually several
of the classes will contain exactly the same elements, so in the second step you must
take a careful look at the classes to determine which are the same. You then indicate the
distinct equivalence classes by describing them without duplication.

Example 8.3.6 Equivalence Classes of a Relation on a Set of Subsets

In Example 8.3.2 it was shown that the relation R was an equivalence relation, where for
nonempty subsets A and B of {1, 2, 3} to be related by R means that they have the same
least element. Describe the distinct equivalence classes of R.

Solution The equivalence class of {1} is the set of all the nonempty subsets of {1, 2, 3}
whose least element is 1. Thus

[{1}] = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}.
The equivalence class of {2} is the set of all the nonempty subsets of {1, 2, 3} whose
least element is 2. Thus

[{2}] = {{2}, {2, 3}}.
The equivalence class of {3} is the set of all the nonempty subsets of {1, 2, 3} whose
least element is 3. There is only one such set, namely {3} itself. Thus

[{3}] = {{3}}.
Since all the nonempty subsets of {1, 2, 3} are in one of the equivalence classes, this is a
complete listing. Moreover, these classes are all distinct. ■

Example 8.3.7 Equivalence Classes of Identifiers

In Example 8.3.4 it was shown that the relation R of having the same first eight characters
is an equivalence relation on the set L of allowable identifiers in a computer language.
Describe the distinct equivalence classes of R.

Solution By definition of R, two strings in L are related by R if, and only if, they have the
same first eight characters. Given any string s in L ,

[s] = {t ∈ L | t R s}
= {t ∈ L | the first eight characters of t equal the first eight characters of s}.
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[0] = [4] and [1] = [3]. Thus the distinct equivalence classes of the 
relation are {0, 4}, {1, 3}, and {2}. 
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Thus the distinct equivalence classes of R are sets of strings such that (1) each class
consists entirely of strings all of which have the same first eight characters, and (2)
any two distinct classes contain strings that differ somewhere in their first eight
characters.

■

Example 8.3.8 Equivalence Classes of the Identity Relation

Let A be any set and define a relation R on A as follows: For all x and y in A,

x R y ⇔ x = y.

Then R is an equivalence relation. [To prove this, just generalize the argument used in
Example 8.2.2.] Describe the distinct equivalence classes of R.

Solution Given any a in A, the class of a is

[a] = {x ∈ A | x R a}.
But by definition of R, a R x if, and only if, a = x . So

[a] = {x ∈ A | x = a}
= {a} since the only element of A that equals a is a.

Hence, given any a in A,

[a] = {a},
and if x ̸= a, then {x} ̸= {a}. Consequently, all the classes of all the elements of A
are distinct, and the distinct equivalence classes of R are all the single-element subsets
of A. ■

In each of Examples 8.3.5, 8.3.6, 8.3.7 and 8.3.8, the set of distinct equivalence
classes of the relation consists of mutually disjoint subsets whose union is the entire
domain A of the relation. This means that the set of equivalence classes of the relation
forms a partition of the domain A. In fact, it is always the case that the equivalence classes
of an equivalence relation partition the domain of the relation into a union of mutually
disjoint subsets. We establish the truth of this statement in stages, first proving two lem-
mas and then proving the main theorem.

The first lemma says that if two elements of A are related by an equivalence rela-
tion R, then their equivalence classes are the same.

Lemma 8.3.2

Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A.
If a R b, then [a] = [b].

This lemma says that if a certain condition is satisfied, then [a] = [b]. Now [a] and
[b] are sets, and two sets are equal if, and only if, each is a subset of the other. Hence the
proof of the lemma consists of two parts: first, a proof that [a] ⊆ [b] and second, a proof
that [b] ⊆ [a]. To show each subset relation, it is necessary to show that every element in
the left-hand set is an element of the right-hand set.
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Proof of Lemma 8.3.2:

Let A be a set, let R be an equivalence relation on A, and suppose

a and b are elements of A such that a R b.

[We must show that [a] = [b].]
Proof that [a] ⊆ [b]: Let x ∈ [a]. [We must show that x ∈ [b].] Since

x ∈ [a]

then x R a

by definition of class. But a R b

by hypothesis. Thus, by transitivity of R,

x R b.

Hence x ∈ [b]
by definition of class. [This is what was to be shown.]

Proof that [b] ⊆ [a]: Let x ∈ [b]. [We must show that x ∈ [a].] Since

x ∈ [b]

then x R b

by definition of class. Now a R b

by hypothesis. Thus, since R is symmetric,

b R a

also. Then, since R is transitive and x R b and b R a,

x R a.

Hence, x ∈ [a]
by definition of class. [This is what was to be shown.]

Since [a] ⊆ [b] and [b] ⊆ [a], it follows that [a] = [b] by definition of set
equality.

The second lemma says that any two equivalence classes of an equivalence relation
are either mutually disjoint or identical.

Lemma 8.3.3

If A is a set, R is an equivalence relation on A, and a and b are elements of A, then

either [a] ∩ [b] = ∅ or [a] = [b].

The statement of Lemma 8.3.3 has the form

if p then (q or r),
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Now since 3 R 0, then by Lemma 8.3.2,

[3] = [0].
More generally, by the same reasoning,

[0] = [3] = [−3] = [6] = [−6] = . . . , and so on.

Similarly,

[1] = [4] = [−2] = [7] = [−5] = . . . , and so on.

And

[2] = [5] = ⌈−1⌉ = [8] = [−4] = . . . , and so on.

Notice that every integer is in class [0], [1], or [2]. Hence the distinct equivalence
classes are

{x ∈ Z | x = 3k, for some integer k},
{x ∈ Z | x = 3k + 1, for some integer k}, and

{x ∈ Z | x = 3k + 2, for some integer k}.
In words, the three classes of congruence modulo 3 are (1) the set of all integers that are
divisible by 3, (2) the set of all integers that leave a remainder of 1 when divided by 3,
and (3) the set of all integers that leave a remainder of 2 when divided by 3. ■

Example 8.3.10 illustrates a very important property of equivalence classes, namely
that an equivalence class may have many different names. In Example 8.3.10, for instance,
the class of 0, [0], may also be called the class of 3, [3], or the class of−6, [−6]. But what
the class is is the set

{x ∈ Z | x = 3k, for some integers k}.
(The quote at the beginning of this section refers in a humorous way to the philosophically
interesting distinction between what things are called and what they are.)

• Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
A representative of the class S is any element a such that [a] = S.

In exercises 36–41 at the end of this section, you are asked to show in effect, that
if a is any element of an equivalence class S, then S = [a]. Hence any element of an
equivalence class is a representative of that class.
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Carl Friedrich Gauss
(1777–1855)

The following notation is used frequently when referring to congruence relations. It
was introduced by Carl Friedrich Gauss in the first chapter of his book Disquisitiones
Arithmeticae. This work, which was published when Gauss was only 24, laid the founda-
tion for modern number theory.
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Congruence Modulo 3 	
Let R be the relation of congruence modulo 3 on the set Z of all 
integers. That is, for all integers m and n,

m R n ⇔ 3|(m−n)  ⇔  m ≡ n (mod 3).

Describe the distinct equivalence classes of R.

8.3 Equivalence Relations 471

There are exactly as many such tables as there are binary strings of length 4. The rea-
son is that distinct input/output tables can be formed by changing the pattern of the four
0’s and 1’s in the output column, and there are as many ways to do that as there are strings
of four 0’s and 1’s. But the number of binary strings of length 4 is 24 = 16. Hence there
are 16 distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each
distinct input/output table. However, there are infinitely many circuits that give rise to
each table. For instance, two circuits for the previous input/output table are shown below.

■

AND

NOT

NOTP

Q

R OR NOT
P

Q
R

Congruence Modulo n
Example 8.2.4 showed that the relation of congruence modulo 3 is reflexive, symmetric,
and transitive. Therefore, it is an equivalence relation.

Example 8.3.10 Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all
integers m and n,

m R n ⇔ 3 | (m − n) ⇔ m ≡ n (mod 3).

Describe the distinct equivalence classes of R.

Solution For each integer a,

[a] = {x ∈ Z | x R a}
= {x ∈ Z | 3 | (x − a)}
= {x ∈ Z | x − a = 3k, for some integer k}.

Therefore,

[a] = {x ∈ Z | x = 3k + a, for some integer k}.

In particular, [0] = {x ∈ Z | x = 3k + 0, for some integer k}
= {x ∈ Z | x = 3k, for some integer k}
= {. . .− 9,−6,−3, 0, 3, 6, 9, . . .},

[1] = {x ∈ Z | x = 3k + 1, for some integer k}
= {. . .− 8,−5,−2, 1, 4, 7, 10, . . .},

[2] = {x ∈ Z | x = 3k + 2, for some integer k}
= {. . .− 7,−4,−1, 2, 5, 8, 11, . . .}.
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There are exactly as many such tables as there are binary strings of length 4. The rea-
son is that distinct input/output tables can be formed by changing the pattern of the four
0’s and 1’s in the output column, and there are as many ways to do that as there are strings
of four 0’s and 1’s. But the number of binary strings of length 4 is 24 = 16. Hence there
are 16 distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each
distinct input/output table. However, there are infinitely many circuits that give rise to
each table. For instance, two circuits for the previous input/output table are shown below.
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Congruence Modulo n
Example 8.2.4 showed that the relation of congruence modulo 3 is reflexive, symmetric,
and transitive. Therefore, it is an equivalence relation.

Example 8.3.10 Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all
integers m and n,

m R n ⇔ 3 | (m − n) ⇔ m ≡ n (mod 3).

Describe the distinct equivalence classes of R.

Solution For each integer a,

[a] = {x ∈ Z | x R a}
= {x ∈ Z | 3 | (x − a)}
= {x ∈ Z | x − a = 3k, for some integer k}.

Therefore,

[a] = {x ∈ Z | x = 3k + a, for some integer k}.

In particular, [0] = {x ∈ Z | x = 3k + 0, for some integer k}
= {x ∈ Z | x = 3k, for some integer k}
= {. . .− 9,−6,−3, 0, 3, 6, 9, . . .},

[1] = {x ∈ Z | x = 3k + 1, for some integer k}
= {. . .− 8,−5,−2, 1, 4, 7, 10, . . .},

[2] = {x ∈ Z | x = 3k + 2, for some integer k}
= {. . .− 7,−4,−1, 2, 5, 8, 11, . . .}.
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Let R be the relation of congruence modulo 3 on the set Z of all 
integers. That is, for all integers m and n,

mRn ⇔ 3|(m−n) ⇔ m≡n(mod3).

In particular:

8.3 Equivalence Relations 471

There are exactly as many such tables as there are binary strings of length 4. The rea-
son is that distinct input/output tables can be formed by changing the pattern of the four
0’s and 1’s in the output column, and there are as many ways to do that as there are strings
of four 0’s and 1’s. But the number of binary strings of length 4 is 24 = 16. Hence there
are 16 distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each
distinct input/output table. However, there are infinitely many circuits that give rise to
each table. For instance, two circuits for the previous input/output table are shown below.

■

AND

NOT

NOTP

Q

R OR NOT
P

Q
R

Congruence Modulo n
Example 8.2.4 showed that the relation of congruence modulo 3 is reflexive, symmetric,
and transitive. Therefore, it is an equivalence relation.

Example 8.3.10 Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all
integers m and n,

m R n ⇔ 3 | (m − n) ⇔ m ≡ n (mod 3).

Describe the distinct equivalence classes of R.

Solution For each integer a,

[a] = {x ∈ Z | x R a}
= {x ∈ Z | 3 | (x − a)}
= {x ∈ Z | x − a = 3k, for some integer k}.

Therefore,

[a] = {x ∈ Z | x = 3k + a, for some integer k}.

In particular, [0] = {x ∈ Z | x = 3k + 0, for some integer k}
= {x ∈ Z | x = 3k, for some integer k}
= {. . .− 9,−6,−3, 0, 3, 6, 9, . . .},

[1] = {x ∈ Z | x = 3k + 1, for some integer k}
= {. . .− 8,−5,−2, 1, 4, 7, 10, . . .},

[2] = {x ∈ Z | x = 3k + 2, for some integer k}
= {. . .− 7,−4,−1, 2, 5, 8, 11, . . .}.
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Let R be the relation of congruence modulo 3 on the set Z of all 
integers. That is, for all integers m and n,

mRn ⇔ 3|(m−n) ⇔ m≡n(mod3).
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Let R be the relation of congruence modulo 3 on the set Z of all 
integers. That is, for all integers m and n,

mRn ⇔ 3|(m−n) ⇔ m≡n(mod3).

Notice that every integer is in class [0], [1], or [2]. Hence the distinct �
equivalence classes are

472 Chapter 8 Relations

Now since 3 R 0, then by Lemma 8.3.2,

[3] = [0].
More generally, by the same reasoning,

[0] = [3] = [−3] = [6] = [−6] = . . . , and so on.

Similarly,

[1] = [4] = [−2] = [7] = [−5] = . . . , and so on.

And

[2] = [5] = ⌈−1⌉ = [8] = [−4] = . . . , and so on.

Notice that every integer is in class [0], [1], or [2]. Hence the distinct equivalence
classes are

{x ∈ Z | x = 3k, for some integer k},
{x ∈ Z | x = 3k + 1, for some integer k}, and

{x ∈ Z | x = 3k + 2, for some integer k}.
In words, the three classes of congruence modulo 3 are (1) the set of all integers that are
divisible by 3, (2) the set of all integers that leave a remainder of 1 when divided by 3,
and (3) the set of all integers that leave a remainder of 2 when divided by 3. ■

Example 8.3.10 illustrates a very important property of equivalence classes, namely
that an equivalence class may have many different names. In Example 8.3.10, for instance,
the class of 0, [0], may also be called the class of 3, [3], or the class of−6, [−6]. But what
the class is is the set

{x ∈ Z | x = 3k, for some integers k}.

(The quote at the beginning of this section refers in a humorous way to the philosophically
interesting distinction between what things are called and what they are.)

• Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
A representative of the class S is any element a such that [a] = S.

In exercises 36–41 at the end of this section, you are asked to show in effect, that
if a is any element of an equivalence class S, then S = [a]. Hence any element of an
equivalence class is a representative of that class.
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Carl Friedrich Gauss
(1777–1855)

The following notation is used frequently when referring to congruence relations. It
was introduced by Carl Friedrich Gauss in the first chapter of his book Disquisitiones
Arithmeticae. This work, which was published when Gauss was only 24, laid the founda-
tion for modern number theory.
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Determine which of the following congruences are true and which 
are false. 
a. 12≡7(mod5) b. 6≡−8(mod4) c. 3≡3(mod7) 
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Exercise 	
Let A be the set of all ordered pairs of integers for which the 
second element of the pair is nonzero. Symbolically,

A = Z×(Z−{0}).

Define a relation R on A as follows: For all (a, b), (c, d) ∈ A,
(a,b)R(c,d) ⇔ ad=bc.

Describe the distinct equivalence classes of R

474 Chapter 8 Relations

Define a relation R on A as follows: For all (a, b), (c, d) ∈ A,

(a, b) R (c, d) ⇔ ad = bc.

The fact is that R is an equivalence relation.

a. Prove that R is transitive. (Proofs that R is reflexive and symmetric are left to exercise
42 at the end of the section.)

b. Describe the distinct equivalence classes of R.

Solution

a. [We must show that for all (a, b), (c, d), (e, f ) ∈ A, if (a, b) R (c, d) and (c, d)R (e, f ),
then (a, b) R (e, f ).] Suppose (a, b), (c, d), and (e, f ) are particular but arbitrarily
chosen elements of A such that (a, b) R (c, d) and (c, d) R (e, f ).
[We must show that (a, b) R (e, f ).] By definition of R,

(1) ad = bc and (2) c f = de.

Since the second elements of all ordered pairs in A are nonzero, b ̸= 0, d ̸= 0, and
f ̸= 0. Multiply both sides of equation (1) by f and both sides of equation (2) by b to
obtain

(1′) ad f = bc f and (2′) bc f = bde.

Thus

ad f = bde

and, since d ̸= 0, it follows from the cancellation law for multiplication (T7 in
Appendix A) that

a f = be.

It follows, by definition of R, that (a, b) R (e, f ) [as was to be shown].

b. There is one equivalence class for each distinct rational number. Each equivalence
class consists of all ordered pairs (a, b) that, if written as fractions a/b, would equal
each other. The reason for this is that the condition for two rational numbers to be
equal is the same as the condition for two ordered pairs to be related. For instance, the
class of (1, 2) is

[(1, 2)] = {(1, 2), (−1,−2), (2, 4), (−2,−4), (3, 6), (−3,−6), . . .}

since
1
2

= −1
−2

= 2
4

= −2
−4

= 3
6

= −3
−6

and so forth. ■

It is possible to expand the result of Example 8.3.12 to define operations of addition
and multiplication on the equivalence classes of R that satisfy all the same properties
as the addition and multiplication of rational numbers. (See exercise 43.) It follows that
the rational numbers can be defined as equivalence classes of ordered pairs of integers.
Similarly (see exercise 44), it can be shown that all integers, negative and zero included,
can be defined as equivalence classes of ordered pairs of positive integers. But in the
late nineteenth century, F. L. G. Frege and Giuseppe Peano showed that the positive
integers can be defined entirely in terms of sets. And just a little earlier, Richard Dedekind
(1848–1916) showed that all real numbers can be defined as sets of rational numbers. All
together, these results show that the real numbers can be defined using logic and set theory
alone.
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For example, the class (1,2):


