Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2015

Relations

8.1. Introduction to Relations8.2 Properties of Relations8.3 Equivalence Relations

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Online Courses at: http://www.jarrar.info

Acknowledgement:

,

This lecture is based on (but not limited to) to chapter 5 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2015

Relations 8.3 Equivalence Relations

In this lecture:

,

□ Part 1: Partitioned Sets

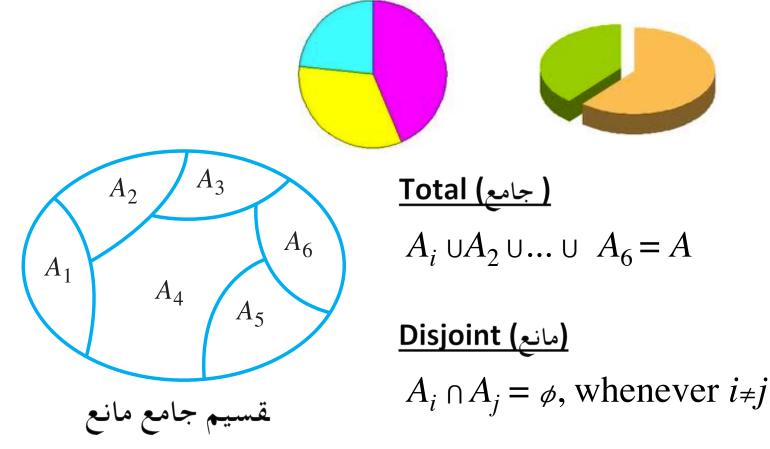
Part 2: Equivalence Classes

Part 3: Equivalence Relation

Partitioned Sets

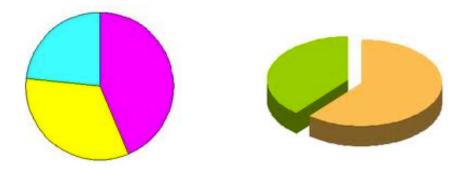
Sets can be partitioned into disjoint sets

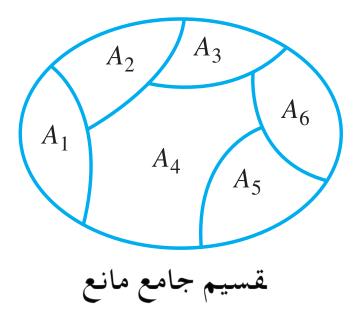
A **partition** of a set *A* is a finite or infinite collection of nonempty, mutually disjoint subsets whose union is *A*.



Partitioned Sets

Sets can be partitioned into disjoint sets



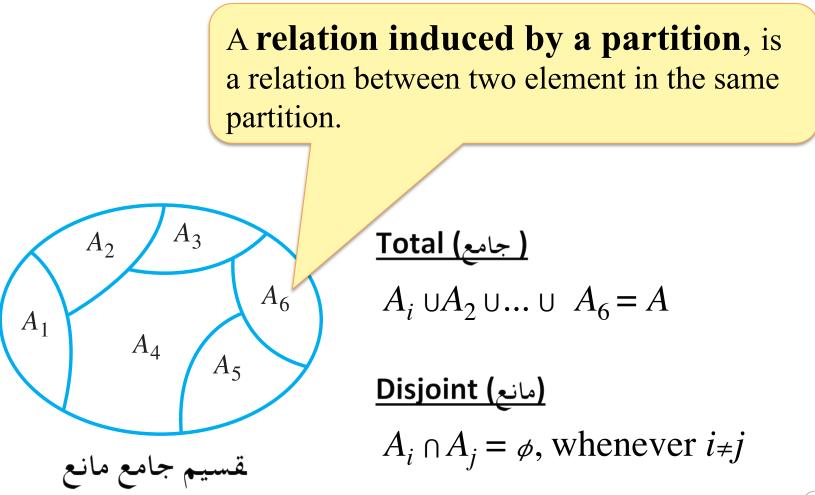


 $\frac{\text{Total (main scale bound of the scale bound of$

(مانع) Disjoint

 $A_i \cap A_j = \phi$, whenever $i \neq j$

Relations Induced by a Partition

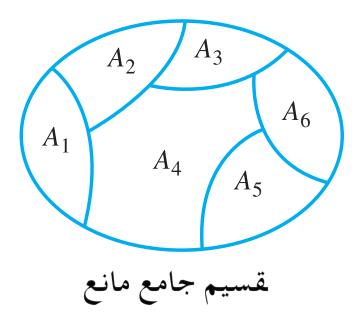


Relations Induced by a Partition

Definition

Given a partition of a set A, the **relation induced by the partition**, R, is defined on A as follows: For all $x, y \in A$,

 $x R y \Leftrightarrow$ there is a subset A_i of the partition such that both x and y are in A_i .



Total (جامع)
$$A_i \cup A_2 \cup \ldots \cup A_6 = A$$

مانع) Disjoint

$$A_i \cap A_j = \phi$$
, whenever $i \neq j$

Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A: $\{0, 3, 4\}, \{1\}, \{2\}.$ Find the relation R induced by this partition.

Since $\{0, 3, 4\}$ is a subset of the partition,

,

- because both 0 and 3 are in $\{0, 3, 4\}$, 0 R 3
- because both 3 and 0 are in $\{0, 3, 4\}$, 3 *R* 0
- 0 *R* 4 because both 0 and 4 are in $\{0, 3, 4\}$,
- 4 R 0because both 4 and 0 are in $\{0, 3, 4\}$,
- 3 *R* 4 because both 3 and 4 are in $\{0, 3, 4\}$, and
- 4 *R* 3 because both 4 and 3 are in $\{0, 3, 4\}$.
- Also, because both 0 and 0 are in $\{0, 3, 4\}$ 0 R 0
 - because both 3 and 3 are in $\{0, 3, 4\}$, 3 R 3 and
 - because both 4 and 4 are in $\{0, 3, 4\}$. 4 *R* 4

8

Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A: $\{0, 3, 4\}, \{1\}, \{2\}.$ *Find the relation R induced by this partition.*

Since {1} is a subset of the partition,

,

1 R 1 because both 1 and 1 are in $\{1\}$,

and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in $\{2\}$.

Hence $R = \{(0,0), (0,3), (0,4), (1,1), (2,2), (3,0), (3,3), (3,4), (4,0), (4,3), (4,4)\}.$

Relations Induced by a Partition

Theorem 8.3.1

,

Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive. Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2015

Relations 8.3 Equivalence Relations

In this lecture:

,

Part 1: Partitioned Sets

Part 2: Equivalence Classes

Part 3: Equivalence Relation

Equivalence Relation علاقة تكافؤ

Definition

,

Let *A* be a set and *R* a relation on *A*. *R* is an **equivalence relation** if, and only if, *R* is reflexive, symmetric, and transitive.

➔ The relation induced by a partition is an equivalence relation

Let *X* be the set of all nonempty subsets of $\{1, 2, 3\}$. Then $X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Define a relation R on X as follows: For all A and B in X,

 $A \ R \ B \Leftrightarrow$ the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

R is reflexive: Suppose A is a nonempty subset of $\{1, 2, 3\}$. [We must show that A **R** A.] It is true to say that the least element of A equals the least element of A. Thus, by definition of R, $A \mathbf{R} A$.]

R is symmetric: Suppose A and B are nonempty subsets of $\{1, 2, 3\}$ and A **R** B. [We must show that B **R** A.] Since A **R** B, the least element of A equals the least element of B. But this implies that the least element of B equals the least element of A, and so, by definition of **R**, B **R** A.

Let *X* be the set of all nonempty subsets of $\{1, 2, 3\}$. Then $X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Define a relation R on X as follows: For all A and B in X,

 $A \ R \ B \Leftrightarrow$ the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

R *is transitive*: Suppose *A*, *B*, and *C* are nonempty subsets of $\{1, 2, 3\}$, *A* **R** *B*, and *B R C*. *[We must show that A* **R** *C*.*]* Since *A* **R** *B*, the least element of *A* equals the least element of *B* and since *B* **R** *C*, the least element of *B* equals the least element of *C*. Thus the least element of *A* equals the least element of *C*, and so, by definition of **R**, *A* **R** *C*.

Let S be the set of all digital circuits with a fixed number n of inputs. Define a relation E on S as follows: For all circuits C1 and C2 in S,

 $C_1 \to C_2 \Leftrightarrow C1$ has the same input/output table as C2.

- **E** is reflexive: Suppose C is a digital logic circuit in S. [We must show that $C \in C$.] Certainly C has the same input/output table as itself. Thus, by definition of **E**, $C \in C$
- **E** *is symmetric*: Suppose C_1 and C_2 are digital logic circuits in *S* such that $C_1 \in C_2$. By definition of E, since $C_1 \in C_2$, then C_1 has the same input/ output table as C_2 . It follows that C_2 has the same input/output table as C_1 . Hence, by definition of E, $C_2 \in C_1$
- **E** *is transitive*: Suppose C_1 , C_2 , and C_3 are digital logic circuits in *S* such that $C_1 \in C_2$ and $C_2 \in C_3$. By definition of **E**, since $C_1 \in C_2$ and $C_2 \in C_3$, then C_1 has the same input/output table as C_2 and C_2 has the same input/output table as C_3 . It follows that C_1 has the same input/output table as C_3 . Hence, by definition of **E**, $C_1 \in C_3$

Let L be the set of all allowable identifiers in a certain computer language, and define a relation R on L as follows: For all strings s and t in L,

 $s R t \Leftrightarrow$ the first eight characters of s equal the first eight characters of t.

R is reflexive: Let $s \in L$. Clearly *s* has the same first eight characters as itself. Thus, by definition of *R*, *s R s*.

R is symmetric: Let s and t be in L and suppose that s R t. By definition of R, since s R t, the first eight characters of s equal the first eight characters of t. But then the first eight characters of t equal the first eight characters of s. And so, by definition of R, t R s

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. By definition of R, since s R t and t R u, the first eight characters of s equal the first eight characters of t, and the first eight characters of t equal the first eight characters of u. Hence the first eight characters of s equal the first eight characters of u. Thus, by definition of R, s R u

Mustafa Jarrar: Lecture Notes in Discrete Mathematics. Birzeit University, Palestine, 2015

Relations 8.3 Equivalence Relations

In this lecture:

Part 1: Partitioned Sets

Part 2: Equivalence Classes

Part 3: Equivalence Relation

Equivalence Class

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A, the **equivalence class of** a, denoted [a] and called the **class of** a for short, is the set of all elements x in A such that x is related to a by R.

In symbols:

,

 $[a] = \{x \in A \mid x R a\}$

for all $x \in A$, $x \in [a] \Leftrightarrow x R a$.

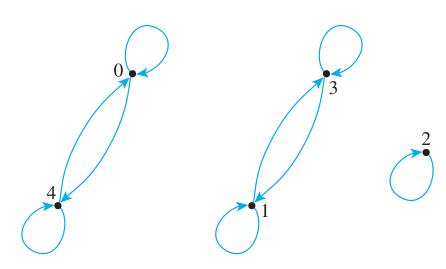
Let $A = \{0,1,2,3,4\}$ and define a relation R on A as : $R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}.$

Find the distinct equivalence classes of R.

,

Let $A = \{0,1,2,3,4\}$ and define a relation R on A as : $R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}.$

Find the distinct equivalence classes of R.



$$[0] = \{x \in A \mid x \ R \ 0\} = \{0, 4\}$$
$$[1] = \{x \in A \mid x \ R \ 1\} = \{1, 3\}$$
$$[2] = \{x \in A \mid x \ R \ 2\} = \{2\}$$
$$[3] = \{x \in A \mid x \ R \ 3\} = \{1, 3\}$$
$$[4] = \{x \in A \mid x \ R \ 4\} = \{0, 4\}$$

[0] = [4] and [1] = [3]. Thus the *distinct* equivalence classes of the relation are $\{0, 4\}, \{1, 3\}, \text{ and } \{2\}$.

Equivalence Class

Lemma 8.3.2

Suppose *A* is a set, *R* is an equivalence relation on *A*, and *a* and *b* are elements of *A*. If $a \ R \ b$, then [a] = [b].

Lemma 8.3.3

If A is a set, R is an equivalence relation on A, and a and b are elements of A, then

either $[a] \cap [b] = \emptyset$ or [a] = [b].

• Definition

,

Suppose *R* is an equivalence relation on a set *A* and *S* is an equivalence class of *R*. *A* **representative** of the class *S* is any element *a* such that [a] = S.

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all integers m and n,

 $m R n \Leftrightarrow 3 \mid (m-n) \Leftrightarrow m \equiv n \pmod{3}.$

Describe the distinct equivalence classes of R.

For each integer *a*,

$$[a] = \{x \in \mathbb{Z} \mid x R a\}$$
$$= \{x \in \mathbb{Z} \mid 3 \mid (x - a)\}$$
$$= \{x \in \mathbb{Z} \mid x - a = 3k, \text{ for some integer } k\}.$$

Therefore

,

 $[a] = \{x \in \mathbb{Z} \mid x = 3k + a, \text{ for some integer } k\}.$

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all integers m and n,

$$mRn \Leftrightarrow 3|(m-n) \Leftrightarrow m \equiv n \pmod{3}.$$

In particular:

 $[0] = \{x \in \mathbb{Z} \mid x = 3k + 0, \text{ for some integer } k\}$ = $\{x \in \mathbb{Z} \mid x = 3k, \text{ for some integer } k\}$ = $\{\dots - 9, -6, -3, 0, 3, 6, 9, \dots\},$ $[1] = \{x \in \mathbb{Z} \mid x = 3k + 1, \text{ for some integer } k\}$ = $\{\dots - 8, -5, -2, 1, 4, 7, 10, \dots\},$ $[2] = \{x \in \mathbb{Z} \mid x = 3k + 2, \text{ for some integer } k\}$ = $\{\dots - 7, -4, -1, 2, 5, 8, 11, \dots\}.$

Let R be the relation of congruence modulo 3 on the set \mathbb{Z} of all integers. That is, for all integers m and n,

 $mRn \Leftrightarrow 3|(m-n) \Leftrightarrow m \equiv n \pmod{3}.$

Now since 3 R 0, then by Lemma 8.3.2,

[3] = [0].

More generally, by the same reasoning,

 $[0] = [3] = [-3] = [6] = [-6] = \dots$, and so on.

Similarly,

$$[1] = [4] = [-2] = [7] = [-5] = \dots$$
, and so on.

And

 $[2] = [5] = [-1] = [8] = [-4] = \dots$, and so on. 24

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all integers m and n,

 $mRn \Leftrightarrow 3|(m-n) \Leftrightarrow m \equiv n \pmod{3}.$

Notice that every integer is in class [0], [1], or [2]. Hence the distinct equivalence classes are

 $\{x \in \mathbb{Z} \mid x = 3k, \text{ for some integer } k\},\$

 $\{x \in \mathbb{Z} \mid x = 3k + 1, \text{ for some integer } k\},\$

 $\{x \in \mathbb{Z} \mid x = 3k + 2, \text{ for some integer } k\}.$

Determine which of the following congruences are true and which are false.

a. $12 \equiv 7 \pmod{5}$ b. $6 \equiv -8 \pmod{4}$ c. $3 \equiv 3 \pmod{7}$

- a. True. $12 7 = 5 = 5 \cdot 1$. Hence $5 \mid (12 7)$, and so $12 \equiv 7 \pmod{5}$.
- b. False. 6 (-8) = 14, and $4 \not| 14$ because $14 \neq 4 \cdot k$ for any integer k. Consequently, $6 \not\equiv -8 \pmod{4}$.
- c. True. $3 3 = 0 = 7 \cdot 0$. Hence $7 \mid (3 3)$, and so $3 \equiv 3 \pmod{7}$.

Exercise

Let *A* be the set of all ordered pairs of integers for which the second element of the pair is nonzero. Symbolically, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\}).$

Define a relation *R* on *A* as follows: For all $(a, b), (c, d) \in A$, $(a,b)R(c,d) \Leftrightarrow ad=bc$.

Describe the distinct equivalence classes of R

For example, the class (1,2): $[(1,2)] = \{(1,2), (-1,-2), (2,4), (-2,-4), (3,6), (-3,-6), \ldots\}$ since $\frac{1}{2} = \frac{-1}{-2} = \frac{2}{4} = \frac{-2}{-4} = \frac{3}{6} = \frac{-3}{-6}$ and so forth.