Counting & Probability

Mustafa Jarrar

9.1 Basics of Probability and Counting

- 9.2 Possibility Trees and the Multiplication Rule
- 9.3 Counting Elements of Disjoint Sets: Addition Rule
- 9.4 Counting Subsets of a Set: Combinations
- 6.5 r-Combinations with Repetition Allowed

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Lectures Courses at: http://www.jarrar.info

Acknowledgement:

This lecture is based on, but not limited to, chapter 5 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

In this Lecture

We will learn:

- Part 1: Probability and Sample Space
- Part 2: Counting in Sub lists

Tossing Coins

Tossing two coins and observing whether 0, 1, or 2 heads are obtained.

What are the chances of having 0,1,2 heads?

Tossing Coins

Tossing two coins and observing whether 0, 1, or 2 heads are obtained.

What are the chances of having 0,1,2 heads?

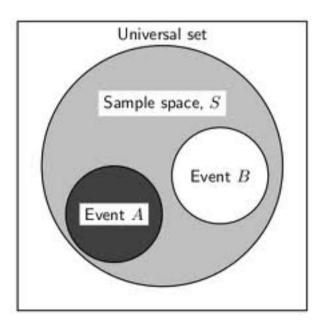


Event	Tally	Frequency (Number of times the event occurred)	Relative Frequency (Fraction of times the event occurred)
2 heads obtained	HH HH I	11	22%
1 head obtained		27	54%
0 heads obtained	HT HT	12	24%

Sample Space الفراغ العيني

Definition

A sample space is the set of all possible outcomes of a random process or experiment. An **event** is a subset of a sample space.



Sample Space

In case an experiment has finitely many outcomes and all outcomes are equally likely to occur, the *probability* of an event (set of outcomes) is just the ratio of the number of outcomes in the event to the total number of outcomes

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are equally likely and E is an event in S, then the **probability of** E, denoted P(E), is

$$P(E) = \frac{\text{the number of outcomes in } E}{\text{the total number of outcomes in } S}.$$

Notation

For any finite set A, N(A) denotes the number of elements in A.

$$P(E) = \frac{N(E)}{N(S)}.$$

Probabilities for a Deck of Cards

- a. What is the sample space of outcomes?
- b. What is the event that the chosen card is a black face card?
- c. What is the probability that the chosen card is a black face card?

Probabilities for a Deck of Cards

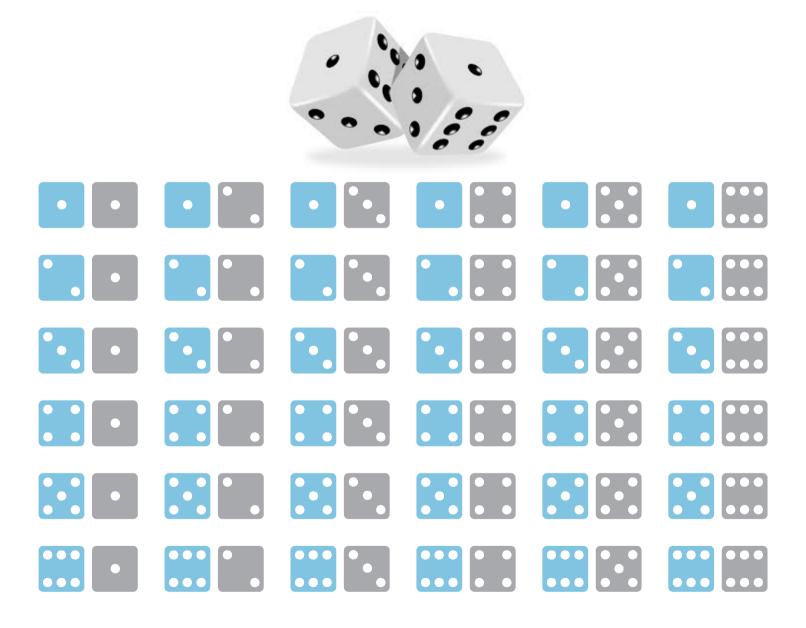
- diamonds (♦)
- hearts (♥)
- clubs (4)
- spades ()
- a. What is the sample space of outcomes?
 - → the 52 cards in the deck.
- b. What is the event that the chosen card is a black face card?

$$\rightarrow E = \{J\clubsuit, Q\clubsuit, K\clubsuit, J\spadesuit, Q\spadesuit, K\spadesuit\}$$

c. What is the probability that the chosen card is a black face card?

$$P(E) = \frac{N(E)}{N(S)} = \frac{6}{52} \cong 11.5\%.$$

Rolling a Pair of Dice



Rolling a Pair of Dice

a. Write the sample space *S* of possible outcomes (using compact notion).

b. write the event E that the numbers showing face up have a sum of 6 and find the probability of this event.

Rolling a Pair of Dice

a. Write the sample space *S* of possible outcomes (using compact notion).

$$S = \{11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66\}.$$

b. write the event E that the numbers showing face up have a sum of 6 and find the probability of this event.

$$E = \{15, 24, 33, 42, 51\}.$$
 $P(E) = \frac{N(E)}{N(S)} = \frac{5}{36}.$

Part 2

Counting the Elements of a List

Some counting problems are as simple as counting the elements of a list. E.g., how many integers are there from 5 through 12?

list:
$$5$$
 6 7 8 9 10 11 12 \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow count: 1 2 3 4 5 6 7 8

Theorem 9.1.1 The Number of Elements in a List

If m and n are integers and $m \le n$, then there are n - m + 1 integers from m to n inclusive.

Counting the Elements of a Sublist

a. How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

b. What is the probability that a randomly chosen three-digit integer is divisible by 5?

Counting the Elements of a Sublist

a. How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

From the sketch it is clear that there are as many three-digit integers that are multiples of 5 as there are integers from 20 to 199 inclusive. By Theorem 9.1.1, there are 199 - 20 + 1, or 180, such integers. Hence there are 180 three-digit integers that are divisible by 5.

b. What is the probability that a randomly chosen three-digit integer is divisible by 5?

$$999 - 100 + 1 = 900.$$

By Theorem 9.1.1 the total number of integers from 100 through 999 is 999 - 100 + 1 = 900. By part (a), 180 of these are divisible by 5. Hence the probability that a randomly chosen three-digit integer is divisible by 5 is 180/900 = 1/5.