

(7

Example 1

Let $S = \{Ann, Bob, Cyd, Dan\}$. Each committee consisting of three of the four people in *S* is a 3-combination of *S*.

List all such 3-combinations of S.

{Bob, Cyd, Dan}	leave out Ann
{Ann, Cyd, Dan}	leave out Bob
{Ann, Bob, Dan}	leave out Cyd
{Ann, Bob, Cyd}	leave out Dan.

What is $\binom{4}{3}$?

= 4.

4

13

where *n* and *r* are nonnegative integers with $r \leq n$.

How to calculate $\binom{n}{0}$ $\binom{n}{0} = \frac{n!}{0!(n-0)!} = \frac{n!}{1 \cdot n!} = 1$

Exercise 1

Suppose 5 members of a group of 12 are to be chosen to work as a team. *How many distinct five-person teams can be selected?*

$$\binom{12}{5} = \frac{12!}{5!(12-5)!} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot 7!} = 11 \cdot 9 \cdot 8 = 792.$$

15

Permutations of a Set with Repeated Elements

Consider various ways of ordering the letters in the word *MISSISSIPPI*: *IIMSSPISSIP, ISSSPMIIPIS*, and so on. *How many distinguishable orderings are there?*

$$\begin{bmatrix} \text{number of ways to} \\ \text{position all the letters} \end{bmatrix} = \begin{pmatrix} 11 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= \frac{11!}{4!7!} \cdot \frac{7!}{4!3!} \cdot \frac{3!}{2!1!} \cdot \frac{1!}{1!0!}$$
$$= \frac{11!}{4! \cdot 4! \cdot 2! \cdot 1!} = 34,650.$$

