
ENCS234 – DIGITAL SYSTEM

Modeling of Multifunction
ALU

Verilog Project

ID: 1212326

2/6/2023

a. Specify the size of the output (O) in bits so the overflow can never occur.

Bits of output (O) = N + 2

b. Show the ALU implementation using medium-scale integration (MSI)

components and minimum number of gates (i.e. in blocks with their

sizes). Note that, you might use some kind of extension (sign- or zero-

extension).

Figure 1. ALU Diagram

There are three 4-to-1 multiplexer are used which control the inputs of the N+2 Bit adder based on

the first four functions. In this logic unit last four functions are perform which are bitwise NAND,

NOT, NOR and XOR gate on the input values. After the logic unit each function output bit is

extended from the MSB side so that actual bits will be equal to the output bits. At the output N+2

Bit 8-to-1 multiplexer is connected which select the one operation based on the selection lines and

gives the O result.

c. Write behavioral Verilog modules for your elements you defined in Part

(b). Be noted that the size of every element you define should be

parameterized, so that you can vary the design during the testing phase.

Adder Code

module Adder_1212326#(parameter N=4)(A,B,Cin,Sum);//define inputs and outputs, N by default is 4

input [N+1:0] A,B;//define N+2 A and B inputs

input Cin;//define carry input of Adder

output [N+1:0] Sum;//define N+2 addition output

assign Sum = A + B + {{N{1'b0}},Cin};//addition on A+B+Cin

endmodule

Figure 2. N+2 Bits Adder Module Verilog Code

This module takes the N+2 bit X and Y inputs and 1-bit Cin input, based on the first four ALU

function this module perform addition and gives result in the form of N+2 bit S. Which will further

classifies for the operation of the ALU.

Mux 4-to-1 Code

module Mux4to1_1212326 # (parameter N=4) (I0,I1,I2,I3,S,Y);//define input and output, N by default is 4

input [N+1:0] I0,I1,I2,I3;//N+2 bits data inputs of mux

input [1:0] S;//2 bit selection input of mux

output [N+1:0] Y;//N+2 mux output

assign Y = S[1] ? (S[0] ? I3:I2) : (S[0] ? I1:I0);//mux implementation using conditional statement

endmodule

Figure 3. N+2 Bit 4-to-1 Multiplexer Module Verilog Code

This module takes 4 data inputs I0, I1, I2, I3 of N+2 bits and one 2-bit select line input and based

on the select line input N+2 bit output is connected with respective input data line.

Mux 8-to-1 Code

module Mux8to1_1212326 # (parameter N=4) (I0,I1,I2,I3,I4,I5,I6,I7,S,Y);//define input and output, N by default is 4

input [N+1:0] I0,I1,I2,I3,I4,I5,I6,I7;//N+2 bits data inputs of mux

input [2:0] S;//3 bit selection input of mux

output [N+1:0] Y;//N+2 mux output

assign Y = S[2] ? (S[1] ? (S[0] ? I7:I6) : (S[0] ? I5:I4)) : (S[1] ? (S[0] ? I3:I2) : (S[0] ? I1:I0));//mux implementation using

conditional statement

endmodule

Figure 4. N+2 Bit 8-to-1 Multiplexer Module Verilog Code

This module takes 8 data inputs I0, I1, I2, I3, I4, I5, I6, I7 of N+2 bits and one 3-bit select line

input and based on the select line input N+2 bit output is connected with respective input data line.

Mux 4-to-1 1-Bit Code

module Mux4to1_1bit_1212326 (I0,I1,I2,I3,S,Y);//define input and output, N by default is 4

input I0,I1,I2,I3;//N+2 bits data inputs of mux

input [1:0] S;//2 bit selection input of mux

output Y;//N+2 mux output

assign Y = S[1] ? (S[0] ? I3:I2) : (S[0] ? I1:I0);//mux implementation using conditional statement

endmodule

Figure 5. 1-Bit 4-to-1 Multiplexer Module Verilog Code

This module takes 4 data inputs I0, I1, I2, I3 of 1-bits and one 2-bit select line input and based on

the select line input 1-bit output is connected with respective input data line.

Logic Unit Code

module LogicUnit_1212326 # (parameter N=4) (X,Y,I_4,I_5,I_6,I_7);//define input and output, N by default is 4

input [N-1:0] X,Y;//N bits inputs

output [N-1:0] I_4,I_5,I_6,I_7;//N bits outputs of logic Unit

assign I_4 = ~(X&Y);//Bitwise NAND Gate

assign I_5 = ~(X);//Bitwise NOT Gate

assign I_6 = ~(X|Y);//Bitwise NOR Gate

assign I_7 = X^Y;//Bitwise XOR Gate

endmodule

Figure 6. N-Bit Logic Unit Module Verilog Code

This module takes the N bit X and Y inputs and gives the result of bitwise NAND, NOT, NOR

and XOR gate at the N bit output I_4, I_5, I_6, I_7 respectively.

d. Write a structural Verilog model for your ALU designed in Part (b) using

the elements you defined in Part (c).

ALU Code

module ALU_1212326 # (parameter N=4) (X,Y,C,O);//define input and output, N by default is 4

input [N-1:0] X,Y;//N bits inputs

input [2:0] C;//3 bit C input for different operation selection

output [N+1:0] O;//N+2 bits output

wire [N+1:0] A,B,S;//N+2 bits internal variable

wire Cin;//internal variable

wire [N-1:0] I_4,I_5,I_6,I_7;//N bits internal variable

//multiplexer module instantiation for Adder input A

Mux4to1_1212326 #(.N(N)) Mux4to1_X(.I0({X[N-1],X[N-1],X}),

 .I1({X[N-1],X[N-1],X}),.I2({X[N-

1],X[N-1],X[N-1],X[N-1:1]}),

 .I3({X[N-1],X[N-

1],X}),.S(C[1:0]),.Y(A));

//multiplexer module instantiation for Adder input B

Mux4to1_1212326 #(.N(N)) Mux4to1_Y(.I0({Y[N-1],Y[N-1],Y}),

 .I1({Y[N-1],Y[N-1],Y}),.I2({Y[N-

1],Y[N-1],Y}),

 .I3(~({Y[N-1],Y[N-1],Y[N-1],Y[N-

1:1]})),.S(C[1:0]),.Y(B));

//multiplexer module instantiation for Adder input Cin

Mux4to1_1bit_1212326 Mux4to1_Cin (.I0(1'b0),.I1(1'b0),.I2(1'b0),.I3(1'b1),.S(C[1:0]),.Y(Cin));

//Adder module instantiation

Adder_1212326 #(.N(N)) Adder(.A(A),.B(B),.Cin(Cin),.Sum(S));

//Logic Unit Module instantiations

LogicUnit_1212326 #(.N(N)) logicUnit(.X(X),.Y(Y),.I_4(I_4),.I_5(I_5),.I_6(I_6),.I_7(I_7));

//Multplexer module instantiation for output O

Mux8to1_1212326 #(.N(N)) MUX8to1_O(.I0({S[N+1],S[N+1:1]}),.I1({S[N:0],1'b0}),

 .I2(S),.I3(S),

 .I4({I_4[N-1],I_4[N-

1],I_4}),.I5({I_5[N-1],I_5[N-1],I_5}),

 .I6({I_6[N-1],I_6[N-

1],I_6}),.I7({I_7[N-1],I_7[N-1],I_7}),.S(C),.Y(O));

endmodule

Figure 7. Structural ALU Module Verilog Code

In this module all sub module are instantiate and connected as according to the diagram that are

mentioned in the part b. This is structural main module code of ALU. In this module N value is by

default 4 and it can be change to any value.

e. Generate the waveforms of the ALU defined in Part (d), assumes that X

and Y are 4-bits and their values based on your student ID should be set

as follows: The general representation of the student ID is

1C2Y2X2C1Y1X1, so, student ID is 1212326, then X, Y, and C values for

the three test cases as follows:

Table 1. Structural Test Case Table

Test X Y C O

1 X1 = 6 Y1 = 2 C1 = 3 6 - (2/2) = 5

2 X2 = 2 Y2 = 1 C2 = 2 (2/2) + 1 = 2

3 X3 = -6 Y3 = -2 C3 = 2 (-6/2) + (-2) = -5

Figure 8. Structural ALU Module Simulation

This is the simulation of structural ALU code, in this simulation first 100 ns simulation is for X-

(Y/2), from 100 ns to 300 ns simulation is for (X/2)+Y. Result of this simulation is same as the

table mentioned above.

f. Write a single behavioral Verilog module that models the designed ALU.

ALU Behavioral Code

module alu_behavioral_1212326 # (parameter N=4) (X,Y,C,O);//define input and output, N by default is 4

input [N-1:0] X,Y;//N bits inputs

input [2:0] C;//3 bit C input for different operation selection

output reg [N+1:0] O;//N+2 bits output

reg [N:0] S0;//internal variable for addition

always @(*)

begin
case (C)

3'b000:

 begin
 S0 = X+Y; //X+Y

 O = {S0[N],S0[N],S0[N:1]}; //(X+Y)/2

 end
3'b001:

 O = {X+Y,1'b0}; //2*(X+Y)

3'b010:

 O = {X[N-1],X[N-1],X[N-1:1]} + {Y[N-1],Y}; //(X/2)+Y

3'b011:

 O = {X[N-1],X[N-1],X} - {Y[N-1],Y[N-1],Y[N-1],Y[N-1:1]}; //X-(Y/2)

3'b100:

 O = ~({X[N-1],X[N-1],X} & {Y[N-1],Y[N-1],Y});//X NAND Y

3'b101:

 O = ~({X[N-1],X[N-1],X});//NOT(X)

3'b110:

 O = ~({X[N-1],X[N-1],X} | {Y[N-1],Y[N-1],Y});//X NOR Y

3'b111:

 O = {X[N-1],X[N-1],X} ^ {Y[N-1],Y[N-1],Y};//X XOR Y

endcase

end

endmodule

Figure 9. Behavioral ALU Module Verilog Code

This is behavioral code for the ALU, in this code a case statement is implemented which is

performing the different operation of the ALU based on the value of C selection input. In each

case different operation of ALU is defined and it will give output based on the changing of any

input signal.

g. Generate the waveforms of the behavioral ALU defined in Part (f),

assumes that X and Y are 4-bits and their values based on your student

ID should be set as follows: The general representation of the student ID

is 1C2Y2X2C1Y1X1, so, if your student ID is 1212326, then X, Y, and C

values for the three test cases as follows:

Table 2. Behavioral Test Case Table

Test X Y C O

1 X1 = 6 Y1 = 2 C1 = 3 6 - (2/2) = 5

2 X2 = 2 Y2 = 1 C2 = 2 (2/2) + 1 = 2

3 X3 = -6 Y3 = -2 C3 = 2 (-6/2) + (-2) = -5

Figure 10. Behavioral ALU Module Simulation

This is the simulation of behavioral ALU code, in this simulation first 100 ns simulation is for X-

(Y/2), from 100 ns to 300 ns simulation is for (X/2)+Y. Result of this simulation is same as the

table mentioned above.

