

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering

Department

Manual for

Digital Electronics and Computer

Organization Lab

ENCS 2110

August 2022

Table of Experiments

LABORATORY REGULATIONS AND SAFETY RULES III

EXP. No. 1. Combinational Logic Circuits ... 1

EXP. No. 2. Comparators, Adders, and Subtractors ... 21

EXP. No. 3. Encoders, Decoders, Multiplexers, and Demultiplexers 42

EXP. No. 4. Digital Circuits Implementation using Breadboard 61

EXP. No. 5. Sequential Logic Circuits .. 73

EXP. No. 6. Sequential Logic Circuits using Breadboard and IC’s 90

EXP. No. 7. Constructing Memory Circuits Using Flip−Flops 97

EXP. No. 8. Introduction to QUARTUSII Software... 106

EXP. No. 9. A Simple Security System Using FPGA .. 134

EXP. No. 10. Simple Computer Simulation .. 145

EXP. No. 11. - Arithmetic Elements ... 157

LABORATORY REGULATIONS AND SAFETY RULES

The following Regulations and Safety Rules must be observed in the laboratory:

1) It is the duty of all concerned who use any electrical laboratory to take all reasonable steps to

safeguard the HEALTH and SAFETY of themselves and all other users and visitors.

2) Be sure that all equipment is properly working before using them for laboratory exercises.

Any defective equipment must be reported immediately to the Lab. Instructors or Lab.

Technical Staff.

3) Students are allowed to use only the equipment provided in the experiment manual or

equipment used for senior project laboratory.

4) Power supply terminals connected to any circuit are only energized with the presence of the

Instructor or Lab. Staff.

5) Students should keep a safe distance from the circuit breakers, electric circuits or any moving

parts during the experiment.

6) Avoid any part of your body to be connected to the energized circuit and ground.

7) Switch off the equipment and disconnect the power supplies from the circuit before leaving

the laboratory.

8) Observe cleanliness and proper laboratory housekeeping of the equipment and other related

accessories.

9) Double check your circuit connections before switching “ON” the power supply.

10) Make sure that the last connection to be made in your circuit is the power supply and first

thing to be disconnected is also the power supply.

11) Equipment should not be removed, transferred to any location without permission from the

laboratory staff.

12) Software installation in any computer laboratory is not allowed without the permission from

the Laboratory Staff.

13) Computer games are strictly prohibited in the computer laboratory.

14) Students are not allowed to use any equipment without proper orientation and actual hands-on

equipment operation.

15) Smoking and drinking in the laboratory are not permitted

Page | 1

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 1. Combinational Logic Circuits

1.1 Objectives

❖ To become familiar with AND, OR, NOT, NAND, NOR , XOR operations and their

implementation.

❖ To construct NOT, AND, OR and XOR gates using NAND gates.

❖ To become familiar with concept of Truth table.

❖ To implement different Boolean function using NAND gate only.

❖ To learn techniques of solution of logic design problems.

❖ To become familiar with minimization techniques and with the use of Karnaugh maps.

❖ To construct AOI gate with basic gates.

1.2 Equipment Required

❖ IT-3000 Basic Electricity Circuit Lab

❖ IT-3002 Basic Gates.

1.3 Pre Lab

❖ Review all gates and write the truth table for each of them.

Page | 2

1.4 Introduction

Logic gates are the digital circuits capable of performing a particular logic function

by operating on a number of binary inputs. Logic gates can be broadly classified as Basic

logic gates, Universal logic gates and other logic gates.

1.4.1 Basic logic gates:

Basic Logic Gates are the fundamental logic gates using which universal logic gates

and other logic gates are constructed. These gates are associative and commutative in nature.

AND, OR and NOT is the famous examples of basic logic gates.

1.4.1.1 AND GATE:

The AND gate performs a logical multiplication commonly known as AND function.

The output is high when both the inputs are high. The output is low level when any one of

the inputs is low. In Figure (1) shows all information for the AND gate.

Figure (1): The function, symbol, truth table and Boolean expression for AND gate.

1.4.1.2 OR GATE:

The OR gate performs a logical addition commonly known as OR function. The output

is high when any one of the inputs is high. The output is low level when both the inputs are

low. In Figure (2) shows all information for the OR gate.

Page | 3

Figure (2): The function, symbol, truth table and Boolean expression for OR gate.

1.4.1.3 NOT GATE:

The NOT gate is called an inverter. The output is high when the input is low. The

output is low when the input is high. In Figure (3) shows all information for the NOT gate.

Figure (3): The function, symbol, truth table and Boolean expression for NOT gate.

1.4.2 Universal logic gates

Universal logic gates are the logic gates that are capable of implementing any Boolean

function without requiring any other type of gate. We called this gate Universal gates because

Universal gates are not associative in nature, but they are commutative in nature. There are

two universal logic gates NAND gate and NOR gates.

1.4.2.1 NAND GATE:

The NAND gate is a contraction of AND-NOT. The output is high when both inputs

are low and any one of the inputs is low. The output is low level when both inputs are high.

In Figure (4) shows all information for the NAND gate.

Page | 4

Figure (4): The function, symbol, truth table and Boolean expression for NAND gate.

1.4.2.2 NOR GATE:

The NOR gate is a contraction of OR-NOT. The output is high when both inputs are

low. The output is low when one or both inputs are high. In Figure (5) shows all information

for the NOR gate.

Figure (5): The function, symbol, truth table and Boolean expression for NOR gate.

1.4.3 Other logic gates

There are two remaining gates of the primary electronics logic gates: XOR, which

stands for Exclusive OR, and XNOR, which stands for Exclusive NOR.

1.4.3.1 EX-OR GATE:

The output is high when any one of the inputs is high. The output is low when both

the inputs are low, and both the inputs are high. In Figure (6) shows all information for the

EX-OR gate.

Figure (6): The function, symbol, truth table and Boolean expression for X-OR gate.

Page | 5

1.4.2.2 EX-NOR GATE:

The X-NOR gate is a contraction of X-OR and NOT. The output is high when number

of ones even. The output is low when number of one is odd. In Figure (7) shows all

information for the X-NOR gate.

Figure (7): The function, symbol, truth table and Boolean expression for X-NOR gate.

Page | 6

1.5 Procedure
In this experiment we will use NAND and NOR gate to build another gate.

1.5.1 The characteristic of NOR gate.

1. Set module IT-3002 and locate block NOR gate as shown in Figure (8). Connect

+5V of module IT-3002 To the +5V output of fixed power supply.

Figure (8): IT-3002 NOR Gate Block.

2. Then use first gate U6 in Figure (8). Connect A and B in block a with Data switch

SW0 and SW1 TTL level in power supply and connect output F1 with Logic

Indicator L0. Then write the result in Table (1).

SW0 SW1 F1

0 0

0 1

1 0

1 1

Table 1

Page | 7

3. In this part connect inputs A, B to Data Switches SW0, SW1 and output F1 to

Logic Indicator L1. Set SW0 to “0” and SW1 to “0”, see the result of the output

F1 then change SW1 to “1”, and see the output to make it clear go to table 2 and

fill the result.

SW0 SW1 F1

0 0

0 1

Table 2

▪ According to the table does the circuit act as a NOT gate.

▪ Find another way to build NOT gate using one NOR gate and draw the circuit

in box below. (Hint: return to Figure (5) and see the truth table of NOR gate

find when the output is opposite of input).

4. Use two of U6 to construct a buffer shown on Figure (9). Insert connection clips

between A and B, connect F1with A1and connect A1 with B1. Connect input A to

SW0 and output F3 to L1. fill the table 3.

Figure (9): build buffer using NOR gate

Page | 8

SW0 F1

0

1

Table 3

• this circuit act as ------------------.

5. We know that OR gate is inverse of NOR gate that mean we can build OR

 gate using (NOR and NOT) gates and we learn how to build NOT gate using

NOR gate only. Draw the following circuit using NOR gate only.

- Use two of U6 to construct an OR gate. Insert connection clips between F1-A1 and A1-B1.

Connect inputs A to SW0, B to SW1; and output F3 to L1. Follow the input sequences

shown below and record the output states in Table 4.

Figure (10): build OR using NOR gate.

SW0 SW1 F3

0 0

0 1

1 0

1 1

Table 4

Page | 9

6. Know we need to build AND gate using NOR gate only to learn how to construct

it, let's solve the following equation. We know that AND gate equation is F=A.B

if we take inverse for this equation then use De morgan low the equation become

F`=………………………………….

If we take inverse for above equation, then the equation become:

F``=………………………………….

- From above equation (F``) we can see that we can build AND gate using one NOR gate

and two NOT gate. Insert connection clips according to the Figure (11) below. The circuit

will act as an AND gate. Connect A to SW0; D to SW1; F1 to A1; F2 to B1; F3 to L1.

Follow the input sequences given below, record the output states in Table 5.

Figure (11): build AND gate using NOR gate using kits.

SW0 SW1 F3

0 0

0 1

1 0

1 1

Table 5

Page | 10

1.5.2 The characteristic of NAND gate.

1. Set module IT-3002 and locate block NAND gate as shown in Figure (12). Connect +5V of

module IT-3002 To the +5V output of fixed power supply.

Figure (12): IT-3002 NAND Gate Block.

2. Then use first gate U4 in Figure (12). Connect A and A1 in block a with Data switch SW0 and

SW1 TTL level in power supply and connect output F2 with Logic Indicator L0. Then write

the result in Table (6).

SW0 SW1 F1

0 0

0 1

1 0

1 1

Table 6

3. In this part connect inputs A, A1 to Data Switches SW0, SW1 and output F2 to Logic

Indicator L1. Set SW0 to “1” and SW1 to “0”, see the result of the output F1 then change

SW1 to “1”, and see the output to make it clear go to table 7 and fill the result in table.

Page | 11

Table 7

• According to the table does the circuit act as a NOT gate?

• Find another way to build NOT gate using one NAND gate and draw the circuit in box

below. (Hint: return to Figure (4) and see the truth table of NAND gate find when the

output is opposite of input).

4. Use two U4 to construct a buffer shown on Figure (13). Insert connection clips between A and

A1, connect F2 with A2 and connect A2 with B2. Connect input A to SW0 and output F4 to

L1. fill the table 8.

Figure (13): build buffer using NAND gate

SW0 SW1 F1

1 0

1 1

Page | 12

SW0 F1

0

1

Table 8

• this circuit act as ------------------.

5. We know that AND gate is inverse of NAND gate that mean we can build AND

 gate using (NAND and NOT) gates and we learn how to build NOT gate using NAND

gate only. Draw the following circuit using NAND gate only.

- Use two U4 to construct an AND gate. Insert connection clips between F2-A2 and A2-

B2. Connect inputs A to SW0, A1 to SW1; and output F4 to L1. Follow the input

sequences shown below and record the output states in Table 9.

Figure (14): build AND using NAND gate.

Page | 13

SW0 SW1 F3

0 0

0 1

1 0

1 1

Table 9

6. Know we need to build OR gate using NAND gate only to learn how to construct it, let's

solve the following equation. We know that OR gate equation is F=A+B if we take inverse

for this equation then use De morgan low the equation become

F`=…………………………………..

If we take inverse for above equation, then the equation become:

F``=………………………………….

- From above equation (F``) we can see that we can build OR gate using one NAND gate

and two NOT gate we put it in input as show in Figure (15). The circuit will act as an OR

gate. Connect A to SW0; D to SW1; F1 to A1; connect A with A1; and D with B1 and F2

to A2; F3 to B2 then connect the output F4 with L1 .Follow the input sequences given

below, record the output states in Table 10.

Figure (15): build OR gate using NAND gate using kits.

Page | 14

SW0 SW1 F3

0 0

0 1

1 0

1 1

Table 10

1.5.3 XOR Gate Circuit.

know we went to build XOR gate using NAND gate we know that XOR equation is

F=AB`+A`B we can build it using basic gates as shown in Figure 16-a . or we can build it

using NAND gates only as shown in Figure 16-b.

 Figure (16-a): Constructed with basic gates. Figure (16-b): Constructed with NAND gates.

Page | 15

1.5.3.1 Constructing XOR gate with NAND gate (Module IT-3002 block

NAND gates)

Insert connection clips according to Figure 17. (a) to construct the circuit of Figure 17.

Connect inputs A to SW1, D to SW2; outputs F1 to L1, F2 to L2; F3 to L3 and F4 to L4.

record the output in Table 11.

Figure (17): Constructed with NAND gates.

SW1 SW2 F1 F2 F3 F4

0 0

0 1

1 0

1 1

Table 11

- Now determine the Boolean expression for F1, F2, F3 and F4.

 F1=…………………………….

 F2=…………………………….

 F3=…………………………….

 F4=…………………………….

Page | 16

- Since F =A'B+AB', when B=0, then F=……………………………. and the circuit act as

………. When B=1, F =………………………………., the circuit act as an …………….

In other words, the input state of an XOR gate determines whether it will act as a

……………or …………. In this experiment now let test this status using Kits KL-33002.

dos the output same to the result above?

1.5.3.2 Constructing XOR gate with Basic Gate (Module IT-3002 block

Comparator1)

Insert connection clips according to Figure 18-a.

o to construct the equivalent circuit of Figure 18-b.

Figure (18-a): Constructed with basic gates using kits.

Figure (18-b): equivalent circuit.

o Connect inputs A, B to SW1, SW2; outputs F1, F2, F3 to L1, L2, L3 as shown in Figure

18-a. write the result in Table 12.

Page | 17

SW1 SW2 F1 F2 F3

0 0

0 1

1 0

1 1

Table 12

1.5.4 AOI Gate Circuits.

AND-OR-INVERTER (AOI) gates consist of two AND gates, one OR gate and one

INVERTER (NOT) gate. The symbol of an AOI gate is shown in Fig. 1.15. The Boolean

expression for the output F is F = (AB+CD)' ……... (1)

 Figure (19): AOI gate.

By De Morgan's theorem, Eq. (1) can be converted to:

F= (A'+B') (C'+D') ……… (2)

 Eq. (1) is also referred to as "Sum of Products".

Eq. (2) is also referred to as "Product of Sums".

Basically, the A-Q-I gate is a "Sum of Products" logic combination

o Use U1 and U2 on block Comparator 1 of module IT-3002, shown in Fig. 1.20 (a), to

construct the A-O-I gate of Fig. 1.20 (b). Fig. 1.20 (c) is the equivalent A-O-I circuit.

Page | 18

 Figure (20-a): AOI circuit Wiring diagram

 Figure (20-b): AOI circuit Actual circuit

 Figure (20-c): AOI circuit Equivalent circuit

o Connect inputs A, A1, B, B1 to Date Switches SW0, SW1, SW2 and SW3 respectively.

Connect outputs F3, F4 to Logic Indicators L1 and L2.

o Set B×B1to “0”, follow the input sequences for A, A1 in Table 13 and record the outputs

Page | 19

A A1 F3 F4

0 0

0 1

1 0

1 1

Table 12

- Does F3 act as an AND gate between A and A1?

o WhenB×B1 is “0”, does F3 act as an AND gate between A and A1? (F3=A×A1).

o WhenA1×A is “0”, follow the input sequences for B, B1 in Table 14 and record the

Outputs.

B B1 F3 F4

0 0

0 1

1 0

1 1

Table 13

- Does F3 act as an AND gate between B and B1?

o WhenA×A1 is “0”, does F3 act as an AND gate between B and B1? Does F3 equal

toA×A1+B×B1?

Page | 20

1.6 Post Lab

▪ Draw the logic diagram showing the implementation of the following Boolean equation

using “NAND” gates

a) F = AB (CA).

b) F= (D.A) + (C.B)

c) F = XZ + Y’Z + X’YZ

▪ Draw the logic diagram of the following Boolean equations using NOR gates.

a) F=(A+B) (CD+A)

b) F= (ABC+D) C

c) F = (X+Z) (Y’+Z) (X’+Y+Z)

▪ Implement the OR operation using AND, NOT gate. Draw the logic diagram and write

Boolean equation.

▪ Implement the AND gate using OR, NOT gate. Draw the logic diagram and write

Boolean equation.

▪ Prove that the equality operation Fl =AB+A’B’ is the inverse of exclusive OR operation

F2=AB’+A’B (use Demerger’s theorem).

▪ Show how is it possible to reduce Boolean expressions by means of Karnaugh map

a) F1 = A’B’C + ABC’ + A’BC’ + AB’C

b) F2=A’D+A’C+BD+AB’D’

c) F3= A'BCD + ABCD' + A'BCD' + ABCD'

d) F4= A'B'C'D' + AB'CD' + A'B'CD' + A'BC'D'

Page | 21

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 2. Comparators, Adders, and Subtractors

2.1 Objectives

❖ To understand the construction and operating principle of digital comparators

❖ To construct comparators with basic gates and ICs

❖ To implement half- and full adders using basic logic gates and ICs

❖ To implement a 4-bit adder unit(s)/ICs to add 4-bit numbers

❖ To understand the theory of complements

❖ To construct half- and full- subtractor circuits

2.2 Equipment Required

❖ IT-3000 Basic Electricity Circuit Lab

❖ IT-3002 Basic Gates Circuit

❖ IT-3003 Adder/Subtractor Circuits

2.3 Pre Lab

1) Prepare all sections and work out all the required designs.

2) Build half adder using basic gates.

3) Build the above circuit using universal gates.

4) Build a full adder using basic gates.

5) Build a full adder using half adder and another gate.

6) Build a 4-bit adder using a full adder.

7) Build a 4-bit subtractor using basic gates.

Page | 22

2.4 Theory

2.4.1 Half- and Full- Adder Circuits:

2.4.1.1 Half Adder:

The half adder accepts two binary digits on its inputs and produces two binary digits

outputs, a sum bit, and a carry bit. The half adder is an example of a simple, functional digital

circuit built from two logic gates. The half adder adds to one-bit binary numbers (AB). The

output is the sum of the two bits (S) and the carry (C)as shown in Figure 1.

Figure (1): Half-Adder Functional Diagram.

Note how the same two inputs are directed to two different gates. The inputs to the XOR

gate are also the inputs to the AND gate. The input "wires" to the XOR gate are tied to the

input wires of the AND gate; thus, when voltage is applied to the A input of the XOR gate, the

A input to the AND gate receives the same voltage. As shown in Figure 2.

Figure (2): Half-Adder circuit and truth table.

Page | 23

2.4.1.2 Full Adder:

The full adder accepts two inputs bits and an input carry and generates a sum output and

an output carry. The full-adder circuit adds three one-bit binary numbers (Cin, A, B) and

outputs two one-bit binary numbers, a sum (S) and a carry (Cout) as shown in Figure 3. The

full adder is usually a component in a cascade of adders, which add 8, 16, 32, etc. binary

numbers.

Figure (3): Full-Adder Functional Diagram.

In Figure 4-a, if you look closely, you'll see the full adder is simply two half adders

joined by an OR. We can implement a full adder circuit with the help of two half adder

circuits. The first half adder will be used to add A and B to produce a partial Sum. The second

half adder logic can be used to add CIN to the Sum produced by the first half adder to get the

final S output. If any of the half-adder logic produces a carry, there will be an output carry.

Thus, COUT will be an OR function of the half-adder Carry outputs. We can see the truth table

for full adder in Figure 4-b.

Figure(4-a): Full-Adder Circuit.

Page | 24

Figure(4-b): Full-Adder Truth table.

To perform additions of numbers greater than 2-bits in length, the connection shown in

Figure 5, or "Parallel Input" should be used to generate sums simultaneously. However, the

sum of the next adder will be stable only after the previous adder's carry has stabilized. For

example, in Figure 5, the sum of FA2 will not be stable unless the carry of FA 1 is stable.

Figure (5): 4-bit adder.

When FA1 adds A1 and B1, a sum S1 and a carry C1 is generated. C1 will be added to

A2 and B2 by FA2, generating another sum S2 and another carry C2. In the case of Figure 5,

the sum of the four adders do not stabilize at the same time, delaying the adding process. This

delay can be eliminated by using the "Look-Ahead" adder.

Look-ahead adders do not have to wait for the previous adder to stabilize before performing

the next addition, saving valuable time. In Boolean expression we assume:

Pi =Ai Bi

Gi =Ai x Bi

The output and carry can be expressed as:

Si = Pi  Cj

Ci+1 = Gi + PiCi

Page | 25

Gi is called "Carry Generate". When Ai and Bi are both "1", Gi is "1" and unrelated to the

carry input. Pi is called "Carry Transmit", related to the carry transmit between Ci and Ci+1. If

we substitute the carry function of each stage by the previous carry, we get:

C2 = G1 + P1 C1

C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 C1

C4=G3+P3C3=G3+P3P2G1+P3P2P1C1

 Figure 6 shows the carry path of a look-ahead adder. The 74182 is a look-ahead adder

TTL-IC.

Figure (6): look-ahead adder.

Binary adders can be converted into BCD adders. Since BCD has 4 bits with the

largest number being 9; and the largest 4-bit binary number is equivalent to 15, there is a

difference of 6 between the binary and the BCD adder: Under following conditions 6 must be

added when binary adders are used to add BCD codes:

1. When there is any carry.

2. When the sum is larger than 9.

If the order of priority is S8, S4, S2, S1 and the sum is larger than 9 then S8 x S4 + S8u x S2. If

any carry is involved, assuming the carry is CY, under this term, 6 must be added:

CY + S8 X S4 + S8 X S2.

Page | 26

Figure (7): BCD adder.

2.4.2 Half- and Full-Subtractor Circuits:

2.4.2.1 Half Subtractor:

Binary subtraction is usually performed by using 2’s complement. Two steps are

required to obtain 2’s complement. First, the subtrahend is inverted to 1’s complement, i.e., a

“1” to a “0” and a “0” to a “1”. Secondly, a “1” is added to the least significant bit of the

subtrahend in 1’s complement.

A half-subtractor performs the task if subtraction 1-bit at a time regardless of whether

the minuend is greater or less than the subtrahend. “Borrow” from previous subtraction is not

taken into consideration

(a) Truth table. (b): Half-Subtractor circuit.

Figure (8): Half-Subtractor.

Page | 27

2.4.2.2 Full Subtractor:

full subtractor is a combinational circuit that performs subtraction of two bits, one is

minuend and other is subtrahend, taking into account borrow of the previous adjacent lower

minuend bit. This circuit has three inputs and two outputs. The three inputs A, B and Bin,

denote the minuend, subtrahend, and previous borrow, respectively. The two outputs, D and

Bout represent the difference and output borrow, respectively. Although subtraction is usually

achieved by adding the complement of subtrahend to the minuend, it is of academic interest to

work out the Truth Table and logic realization of a full subtractor; x is the minuend; y is the

subtrahend; z is the input borrow; D is the difference; and B denotes the output borrow. The

corresponding maps for logic functions for outputs of the full subtractor namely difference and

borrow.

(a) Truth table. (b): Full-Subtractor circuit.

Figure (9): Full-Subtractor.

From a 4-bit adder circuit, we can assemble subtractor circuits of 4-bit or longer. Figure

10 shows a dual-purpose adder/ subtractor circuit. When Bn-1= “0” additions are performed

and all XOR gates act as buffers. When Bn – 1 = “1” subtractions will be performed and all

XOR gates act as NOT gates. Y inputs use 1’s complemented and adds a “1” from Cin. The

outputs are Cn (carry) and Bn (borrow), Cn and Bn are dependent on Bn-1.

Page | 28

Figure (10): Dual-purpose adder/subtractor circuit.

2.4.3 Comparator Circuit

At least two numbers are required to perform any comparison. The simplest form of the

comparator has two inputs. If the two inputs are called A and B, then there are three possible

outputs: A>B, A=B, and A<B. Figure 11 shows the schematic and symbol diagrams of a

simple 1-bit comparator circuit.

(a) Logic diagram. (b): Circuit symbol.

Figure (11): Comparator circuit.

In actual applications, 4-bit comparators are used most often. In a 4-bit comparator, each

bit represents 20, 21, 22, and 23. Comparison will start from the most significant bit (23), if input

A is greater than input B at the 23 bits, the “A>B” output will be in the high state. If A and B

are equal at the 23 bits, the comparison will be carried out at the next highest bit (22). If there is

still no result at this bit, the process is repeated again at the next bit. At the lowest bit (20), if

the inputs are still equal then the “A=B” output will be in the high state. Figure 12 shows the

schematic and symbol of a 4-bit comparator.

Page | 29

 (a): A 4-bit comparator constructed with four 1-bit comparators.

(b): Symbol of a 4-bit comparator

Figure (12): Expansion of 1-bit comparators to construct 4-bit comparator.

Page | 30

2.5 Procedure

2.5.1 Comparator Circuits

2.5.1.1 Constructing Comparator with Basic Logic Gates

1. Set module IT-3002 block Comparator 1.Insert connection clips according to Figure

13 (a). U1, U2, and U3 will be used to construct the 1-bit comparator shown in Fig.

13 (b).

(a) Wiring diagram (IT-3002 Comparator 1 block) (b) Logic diagram

Figure (13): 1-bit comparator.

2. The inputs are triggered by high state voltage. Connect inputs A and B to Data

Switches SW1 and SW2. The outputs are triggered by low state voltage. Connect

outputs F1, F2, F5 to Logic Indicators L1, L2, and L3 respectively. Then Follow the

input sequences the result in Table (1).

INPUTS OUTPUTS

SW2 SW1 F1 F2 F5

0 0 A=B

0 1 A>B

1 0 A<B

1 1 A=B

Table 1

Page | 31

2.5.1.2 Constructing Comparator with TTL IC

1. Block (Comparator 2) of module IT-3002 will be used in this section. U5 is a

74LS85 4-bit Comparator IC shown in Figure 14.

Figure (14): 4-bit Comparator IC (IT-3002 block Comparator 2).

2. Connect input in left side of the blook A<B to SW1, A=B to SW2, A>B to SW3.

The inputs A0~A3 and B0~B3 of the 74LS85 are also connected to the BCD rotary

switch and connect output in right side of the blook A<B , A=B and A>B to Leds.

3. Set comparing inputs A0~A3=As, B0~B3=Bs, and As=Bs from the rotary switch,

follow cascading inputs sequences in Table 2 and record the outputs.

INPUTS OUTPUTS

A>B A=B A<B A>B A=B A<B

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1

Table 2

Compare the results with the function table of 74LS85 (page 2 of the datasheet)1.

1 https://www.futurlec.com/74LS/74LS85.shtml

https://www.futurlec.com/74LS/74LS85.shtml

Page | 32

4. Set SW3 to “0”; SW2 to “1”; SW1 to “0”. Observe and record the outputs under the

following conditions:

a) As >Bs

b) As=Bs

c) As<Bs

Design a three-bit comparator (using the basic comparator) and hand it out to your

TA. (Pre Lab).

2.5.2 Half- and Full-Adder Circuits

2.5.2.1 Half Adder

 Hand out, Design, Boolean function, and truth table of half- and full-adder to your TA.

(Pre Lab).

1. Set module IT-3003 and locate block Half-Adder. Insert connection clips according to

Figure 15 (a), using U5 and U6 to assemble the half-adder circuit of Figure 15 (b).

Connect +5V of module IT-3003 to the +5V output of the fixed power supply.

(a) Wiring diagram (IT-3003 Half-Adder block) (b) Half-Adder circuit

Figure (15): Half -Adder.

2. Connect inputs A, B to Date Switches SW0, SW1 and connect outputs F1, F2 to logic

indicators L1 and L2. Follow the input sequences for A and B in Table 3 and record

the output states.

Page | 33

INPUTS OUTPUTS

SW1 (B) SW0 (A) F1 (CARRY) F2 (SUM)

0 0

0 1

1 0

1 1

Table 3

3. Reassemble the circuit according to Figure 16 (a) to construct the full-adder circuit shown in Figure

16 (b).

4. Connect A, B, C to SW1. SW2 and SW3. A and B are augends while C is the previous

carry. Connect F3 to L1, F5 to L2. Follow the input sequences in Table 4 and record

output states

(a) Wiring diagram (IT-3003 Full-Adder block) (b) Full-Adder circuit

 Figure (16): Full adder

Page | 34

INPUTS OUTPUTS

SW3 (C) SW2 (B) SW1 (A) F3 (CARRY) F5 (SUM)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 4

2.5.2.2 Constructing 4-Bit Full-Adder with IC
1. U9 on block Full-Adder of module IT-3003 is used as a 4-bit adder. Connect input

Y5 to SW0, so the XOR gates U8, which are connected to Y0~Y3, will act as

buffers.

 Connect input X0~X3 (addends), Y0~Y3 (augends) to DIP switches DIP2.0~2.3

and DIP1.0~1.3 respectively as shown in Figure 17. Connect F1, Σ1, Σ2, Σ3, Σ4 to

L1~L5. Follow input sequences in Table 5 and set SW0 to “0”; record F1 and Σ in

binary numbers.

 X = X3X2X1X0

 Y = Y3Y2Y1Y0

 Σ = Σ3Σ2Σ1Σ0

Figure (17): Wiring Diagram (IT-3003 4-bit Full-Adder block).

Page | 35

Table 5

2.5.2.3 High-Speed Adder Carry Generator Circuit
1. U3 (74182) on block High-Speed Adder of module IT-3003 is used to construct a carry

generator circuit shown in Figure 18.

Figure (18): Carry generator circuit.

INPUTS OUTPUTS

Y3 Y2 Y1 Y0 X3 X2 X1 X0 Σ4 Σ3 Σ2 Σ1 F1(CARRY)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0

0 0 0 0 1 0 0 1

0 0 0 0 1 1 1 1

0 0 0 1 0 0 1 1

0 0 0 1 0 1 1 0

0 0 0 1 1 0 0 0

0 0 1 1 0 1 1 0

0 1 0 0 1 0 0 0

0 1 0 0 1 1 1 1

1 0 0 0 0 1 1 1

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 1

Page | 36

2. Connect inputs A0~A3 (addends) to DIP Switches 1.0~1.3; B0~B3 (augends) to

DIP2.0~2.3, connect Cn to SW0, and set SW0 to “0”. Follow the input sequences

in Table 6 and record output states.

INPUTS OUTPUTS

B3

B2

B1

B0

A3

A2

A1

A0

Cn+x

Cn+y

Cn+z

G

P

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 1 1 0 0 1 1

1 0 1 0 1 0 0 0

1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1

0 1 1 1 0 1 1 0

1 0 0 1 0 1 0 1

Table 6

- Compare the results with the truth table of 74LS182 (datasheet).

Page | 37

2.5.2.4 2.5.2.4 Constructing BCD Adder

1. The circuit shown in Figure 19 will act as a BCD adder.

Figure (19): Wiring Diagram (IT-3003 BCD Adder).

2. Connect inputs X0~X3 to DIP 1.0~1.3; Y0~Y3 to DIP 2.0~2.3; Y5 to “0”.

 U9 and U12 are 74LS83 look-ahead 4-bit BCD adders, connect outputs F8~F11 to

the inputs of the 7-Segment display SEG-1. Connect F1, F2 to Logic Indicators L4

and L5.

Connect outputs F4~F7 of U12 to another 7-Segment display SEG-3 and F3 to L10.

3. F8~F11 are the sum of X0~X3 added to Y0~Y3 while F1 is the carry. Follow the

input sequences for X0~X3 and Y0~Y3 in Table 7 and record the output states.

Page | 38

INPUTS OUTPUTS (U9) LAST (U12)

X3 X2 X1 X0 Y3 Y2 Y1 Y0 F1 F11 F10 F9 F8 F2 F3 F7 F6 F5 F4

0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1
0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 1 0 0 0
0 0 1 1 0 1 1 0
0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 0 1 1 0 0
1 0 1 1 1 1 1 0
1 1 1 1 1 1 1 1

Table 7

2.5.3 Half- and Full Subtractor Circuits

2.5.3.1 Constructing Half-/Full Subtractors with basic logic Gates.

 Hand out, Design, Boolean function, and truth table of half- and full-adder to your TA.

(Pre Lab).

1. Set module IT-3003 and locate block Half-Adder. Insert connection clips according

to Figure 20.

2. Connect inputs A~C to Data Switches SW0~SW2; Outputs F2 to Logic Indicator

L1; F1 to L2; F3 to L3; and F5 to L4. When C=0 the circuit is a half-subtractor. F1

is the borrow output; F2 is the difference and F5=F2; F4=0; F3=F1. When C=1 the

circuit is a full-subtractor. F3 is the borrow output and F5 is the difference output.

Page | 39

Figure (20): Wiring diagram (Half-subtractor).

3. Follow the input sequences in Table 8 and record output states.

Table 8

2.5.3.2 Constructing 4-Bit Full-Subtractor with IC

1. Use Module IT-3003 block Full Adder (Figure 21). Connect inputs X3~X0

(minuend) to DIP Switch 1.3~1.0; Y3~Y0 (subtrahend) to DIP 2.3~2.0; Y5 to

SW0.

Connect outputs F1 to L4; F11~F8 to L3~L0. To execute the subtract operation,

 INPUTS OUTPUTS

 C A B F1 F2 F3 F5

Half-

subtractor

Half-adder

0 0 1

0 0 0

0 1 1

0 1 0

Full-

subtractor

Full-adder

1 0 0

1 0 1

1 1 0

1 1 1

Page | 40

set SW0 to “1” (or Cin of U9=1). Follow the input sequences below and record

the output states in Table 9.

Figure (21): Wiring Diagram for full subtractor (IT-3003 4-bit Full-Adder block)

INPUTS OUTPUTS

X3 X2 X1 X0 Y3 Y2 Y1 Y0 F1 F11 F10 F9 F8

0 1 0 0 0 1 0 0

0 1 0 0 0 0 1 1

1 0 0 0 0 0 1 1

1 0 0 0 0 0 0 1

1 0 0 1 1 0 0 0

1 0 0 1 0 1 1 1

1 0 1 0 0 1 1 0

1 0 1 0 0 1 0 1

1 0 1 1 1 0 1 0

1 1 1 1 1 0 1 0

Table 9

Page | 41

2.5 Post Lab

1. Design 8-bit BCD adder-subtractor.

2. Design 8-bit comparator using 2 of 4-bit comparator.

3.A 4-inputs, 3-outputs circuit that compares 2-bit unsigned numbers and outputs a ‘1’ on

one of three output lines according to whether the first number is greater than, equal to, or

less than the other number. You can only use two 4×1 multiplexers.

Page | 42

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 3. Encoders, Decoders, Multiplexers, and Demultiplexers

3.1 Objectives

❖ To understand the operating principles of Encoders/Decoders

❖ To understand the operating principles of Multiplexers/Demultiplexers

❖ To construct Encoders and Decoders using basic gates and ICs

❖ To construct Multiplexers and Demultiplexers using basic gates and ICs

3.2 Equipment Required

❖ IT-3000 Basic Electricity Circuit Lab

❖ IT-3004 Encoder/Decoder Circuits

❖ IT-3005 Multiplexer/Demultiplexer Circuits

3.3 Pre Lab

1) Using proteus build the following circuit and show why you use the components:

a) Build 1x2 Decoder basic gates.

b) Build the above circuit using universal gates.

c) Build a 2x1 Encoder using basic gates.

d) Build an 8x1 Multiplexer using basic gates.

e) Build a 1x8 Demultiplexer using basic gates.

f) Write truth table for all above circuits.

Page | 43

2) Design a circuit which uses an SN74151 to implement a sum-of-products expression, as

follows:

a) Convert the following expression into summation form (i.e., F (A, B, C) =∑ (…)):

𝑌 = 𝑓(𝐴, 𝐵, 𝐶) = 𝐴𝐵̅ + 𝐵̅𝐶

b) Sketch on Figure 1 the input connections necessary to implement the function in part

(a). Observe that the inputs are connected to 0 or 1 depending on the value of the

function for that min term.

Important: Please note that this way we can implement a 3-input function (A, B, C)

using an 8-to-1 MUX. Later we will see how to implement a 4-input function (A, B, C,

D) using an 8-to-1 MUX. For that we will need to inspect the additional input (say D)

with the corresponding function value. The possible inputs to the MUX are 0, 1, D, D`.

Figure (1): Half-Adder Functional Diagram.

Page | 44

3.4 Theory

3.4.1 Decoder

The combinational circuit that changes the binary information into 2N output lines is

known as Decoders. The binary information is passed in the form of N input lines. The

output lines define the 2N-bit code for the binary information. In simple words, the Decoder

performs the reverse operation of the Encoder. At a time, only one input line is activated for

simplicity. The produced 2N-bit output code is equivalent to the binary information. The

outputs of the decoder are nothing, but the min terms of ‘N’ input variables lines as shown

in figure 2.

Figure (2): General Decoder block diagram.

Example show 2 to 4 Decoder. Let 2 to 4 Decoder has two inputs A1 & A0 and four

outputs Y3, Y2, Y1 & Y0. The block diagram of 2 to 4 decoder is shown in the following

figure.

Figure (3): 2 to 4 Decoder with enable.

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is

‘1’. The Truth table of 2 to 4 decoder is shown below.

Page | 45

Table 1

Each output is having one product term. So, there are four product terms in total. We

can implement these four product terms by using four AND gates having three inputs each

& two inverters. The circuit diagram of 2 to 4 decoder is shown in the following figure.

Figure (4): 2 to 4 Decoder circuit.

3.4.2 Encoder

An Encoder is a combinational circuit that performs the reverse operation of Decoder.

It has maximum of 2N input lines and ‘N’ output lines. It will produce a binary code

equivalent to the input, which is active High. Therefore, the encoder encodes 2N input lines

with ‘n’ bits. It is optional to represent the enable signal in encoders.

Enable Inputs Outputs

E A1 A0 Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

Page | 46

Figure (5): General encoder block diagram.

Example show 4 to 2 Encoder. Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0

and two outputs A1 & A0. The block diagram of 4 to 2 Encoder is shown in the following

figure.

Figure (6): 4 to 2 Encoder.

At any time, only one of these 4 inputs can be ‘1’ to get the respective binary code at

the output. The Truth table of 4 to 2 encoder is shown below.

Table 2

We can implement the above two Boolean functions by using two input OR gates.

The circuit diagram of 4 to 2 encoder is shown in the following figure.

Outputs Inputs

Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

Page | 47

Figure (7): 2 to 4 Decoder circuit.

The Priority Encoder solves the problems mentioned above by allocating a priority

level to each input. The priority encoders output corresponds to the currently active input

which has the highest priority. So, when an input with a higher priority is present, all other

inputs with a lower priority will be ignored.

The priority encoder comes in many different forms with an example of an 8-input

priority encoder along with its truth table shown below.

(a) 8 to 3 priority Encoder block diagram. (b): 8 to 3 priority Encoder truth table.

Figure (8): 8 to 3 priority Encoder.

3.4.3 Multiplexer

Multiplexer is a combinational circuit that has maximum of 2n data inputs, ‘n’

selection lines and single output line. One of these data inputs will be connected to the

output based on the values of selection lines. Since there are ‘n’ selection lines, there will be

2n possible combinations of zeros and ones. So, each combination will select only one data

input. Multiplexer is also called as Mux.

Example show 4 to 1 Mux. 4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two

Page | 48

selection lines s1 & s0 and one output Y. The block diagram of 4x1 Multiplexer is shown in

the following figure.

Figure (9): 4 to 1 Mux block diagram.

One of these 4 inputs will be connected to the output based on the combination of

inputs present at these two selection lines. Truth table of 4x1 Multiplexer is shown below.

Table 3

We can implement this Boolean function using Inverters, AND gates & OR gate. The

circuit diagram of 4x1 multiplexer is shown in the following figure.

Figure (10): 4 to 1 multiplexer circuit.

Selections Outputs

S1 S2 Y

0 0 I0

0 1 I1

0 0 I2

1 1 I3

Page | 49

3.4.4 De-Multiplexer

De-Multiplexer is a combinational circuit that performs the reverse operation of

Multiplexer. It has single input, ‘n’ selection lines and maximum of 2n outputs. The input

will be connected to one of these outputs based on the values of selection lines. Since there

are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones. So, each

combination can select only one output. De-Multiplexer is also called as De-Mux.

Example show 1x4 De-Multiplexer. 1x4 De-Multiplexer has one input I, two

selection lines, s1 & s0 and four outputs Y3, Y2, Y1 &Y0. The block diagram of 1x4 De-

Multiplexer is shown in the following figure.

Figure (9): 1 to 4 De-Mux block diagram.

The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based on

the values of selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown

below.

Table 4

Selections Outputs

S1 S2 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

0 0 0 I 0 0

1 1 I 0 0 0

Page | 50

We can implement these Boolean functions using Inverters & 3-input AND gates.

The circuit diagram of 1x4 De-Multiplexer is shown in the following figure.

Figure (10):1 to 4 De-multiplexer circuit.

Page | 51

3.5 Procedure

3.5.1 Constructing a 4-to-2 Encoder with Basic Gates
Constructing a 4-to-2 Encoder with Basic Gates (Module IT-3004 block Encoder 1).

1. Insert connection clips according to Figure 11.

Figure (11): wiring diagram of 4-to-2-line Encoder.

2. Connect +5V of module IT-3004 to the +5V output of fixed power supply section of

IT-3000.

3.Connect inputs A~D to Date Switches SW0~SW3 respectively; outputs F8 and F9 to

Logic Indicator L0 and L1.

4.Follow the input sequences for D, C, B, A; in Table 5 and record the output states.

D C B A F9 F8

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

Page | 52

1 1 0 1

1 1 1 0

1 1 1 1
Table 5

3.5.2 Constructing 9-to-4-Line Encoder with TTL IC

1. The 74147 (U5) on block Encoder 2 of module IT-3004 is used in this section of

the experiment. Connect +5V of module IT-3004 to the +5V output of fixed power

supply. Note that the IC uses only 9 inputs.

Figure (12): 74147 BCD Priority Encoder.

2. As you know, the main kit has 2 sets of DIP switches, with 8 switches each: 1.1-

1.8 and 2.1-2.8. Connect inputs A1~A8 to DIP Switches 1.1~1.8 and A9 to 2.1 (or

one of the unused main switches S1-S4). Connect outputs F1~F4 to Logic

indicators L1~L4. Follow the input sequences given in Table 6 and record output

states. Be aware of the active LOW and active HIGH polarity for the inputs/outputs

when interpreting the results.

A9 A8 A7 A6 A5 A4 A3 A2 A1 F4 F3 F2 F1

0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1

Page | 53

1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 1 1

1 1 1 1 1 0 0 0 0

1 1 1 1 0 1 1 1 1

1 1 1 1 0 0 0 1 1

1 1 1 0 1 1 1 0 0

1 1 0 1 1 0 1 1 0

1 1 0 0 0 1 1 1 1

1 0 0 0 0 1 1 1 1

Table 6

3.5.3 Constructing 2-to-4 Line Decoder with Basic Gates

1. Block Decoder 1 of module IT-3004 will be used in this section of the experiment.

Connect +5V of module IT-3004 to the +5V output of fixed power supply.

Figure (13): 2-to-4 Decoder.

2. Connect inputs A, B to Data Switches SW0 and SW1. Connect outputs F1~F4 to Logic

Indicators L0~L3 respectively.

3. Follow the input sequences for A and B in Table 7 and record output states.

Page | 54

B A F1 F2 F3 F4

0 0

0 1

1 0

1 1

Table 7

3.5.4 Constructing 4-to-10 Line Decoder with TTL IC

1. U6 (7442) on block Decoder 2 of module IT-3004 will be used in this section of

the experiment. 7442 is a BCD-to-Decimal decoder IC. BCD: Binary Coded

Decimal.

Figure (14): 4-to-10-line Decoder.

2. Connect inputs A, B, C and D to the Data Switches SW0, SW1, SW2 and SW3,

respectively. Connect 10 outputs to corresponding Indicators L0~L9.

3. Adjust the switches according to Table 2.2. Observe the output states at L0~L9.

Record input and output logic states in Table 8. (Note input is the binary number

for number in first column).

Page | 55

Table 8

3.5.5 Constructing 2-to-1-Line Multiplexer with basic Gates

1. Block Multiplexer 1 of module IT-3005 will be used as a 2-to-1 MUX. Connect

+5V of module IT-3005 to the +5V output of fixed power supply.

Figure (15): 2-to-1 Multiplexer.

2. Connect inputs A, B to Data Switches SW0, SW1; Selector C to SW2. Connect

output F3 to Logic Indicator L0.

3. Follow the input sequences in Table 3.5 and record states of F3. Which input (A

or B) determines the output for each value of C? Does this correspond to a 2-to-1

Multiplexer as you know it?

C A B F3

0 0 0

Page | 56

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 9

3.5.6 Constructing 8-to-1 Line Multiplexer with IC
1. Block Multiplexer 1 of module IT-3005 will be used as a 2-to-1 MUX. Connect

+5V of module IT-3005 to the +5V output of fixed power supply.

Figure (16): 8-to-1 MUX.

2. Refer to the data sheet for specifications of the 74LS151. A, B, C are the control

(selection) inputs: CBA is the value of C then B then A. So, CBA=011 means that

C=0, B=1, A=1. Q is the output of the MUX.

When CBA = “000”, data at D0 is send to output Q.

When CBA = “010”, data at D2 is send to output Q.

 ⋮

When CBA = “111”, data at D7 is send to output Q.

The IC will function properly only when STROBE = “0”.

Page | 57

When STROBE = “1” IC do not change output according to inputs, Q will remain

“1”.

3. Connect inputs D0~D7 to DIP Switch 1.0~1.7; inputs C, B, A to Data Switches

SW2, SW1, SW0. Follow the input sequences in Table 6, adjust D0~D7 and CBA

and record output states. Determine which input among D0~D7 does Q depend

on.

C A B Q

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 10

3.5.7 Using Multiplexer to implement a Logic Function
Given the following function:

F (A, B, C, D) =∑ (0,2,4,5,7,8,10,11,15)

1. Implement the function using the 8-to-1multiplexer using Block Multiplexer

1 of module IT-3005. Note that we have 4 inputs for this function. Three of

them will be represented by the controls C B A.

2. Connect inputs D, C, B, A to Data Switches SW3, SW2, SW1 and SW0

respectively. Connect output Y (Q) to Logic Indicator L0.

3. Connect the Inputs D0~D7 to the proper input from: {0,1,D,D’} based on

comparing the value of Y and input D for a fixed C B A value: 0 if Y=0 for

D=0 and D=1, 1 if Y=1 for D=0 and Y=1 for D=1, D if Y=0 for Y=0 for D=0

and Y=1 for D=1 and D’ if Y=1 for D=0 and Y=0 for D=1.

4. Record output states in Table 11.

A B C D Y
0 0 0 0
0 0 0 1
0 0 1 0

Page | 58

0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Table 11

3.5.8 Constructing 1-to-2 Line Demultiplexer with Basic Logic Gates
1. Block Multiplexer 1 of module IT-3005 will be used in this section. Make the

connections according to Figure 3.9. Connect A to Data Switch SW0; C to SW3;

F1 and F2 to Logic Indicators L1 and L2 respectively.

Figure (17): 1-to-2 Demultiplexer.

2. Set C to “0” and change data at input A. Observe how F1 and F2 changes. Set C

to “1”, change A and observe how F1 and F2 react to changes of A.

C A F1 F2 F3
0 0
0 1
1 0
1 1

Table 12

3.5.9 Constructing 1-to-8-Line Demultiplexer with CMOS IC

1. U6 (4051) on block Demultiplexer of module IT-3005 is used in this section of the

Page | 59

experiment. Connect +5V, -5V of module IT-3005 to the +5V and -5V output of fixed power

supply respectively.

Figure (18): 1-to-8 Demultiplexer

2. Connect E to DIP1.0; D to DIP1.1; A to SW0; B to SW1; C to SW2; outputs Y0~Y7 to Logic

Indicators L0~L7 respectively.

3. At D=0, apply the input sequence 1→0→1→0 to the common input E and observe outputs

Y0~Y7. Did the outputs change as the input sequence is applied? Why?

4. At D=1, apply the input sequence 1→0→1→0 to the common input E and observe outputs

Y0~Y7. Did the outputs change as the input sequence is applied?

5. Using the same sequence for E (1→0→1→0) with D=0, follow the sequence for A, B and C

given in Table 13. Record output states.

C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 13

Page | 60

3.6 Post Lab

1. Implementing one 4 to 16 decoders using 3 to 8 decoders.

2. Implement 1x8 De-Multiplexer using lower order Multiplexers. Show how to solve it.

3. Implement 16x1 Multiplexer using lower order Multiplexers Show how to solve it.

4. Design a Majority Circuit; a circuit that takes 4 inputs A, B, C, D and 1 output Y. Its output equals 1

when 3 or 4 of the inputs are 1. You can only use two 4×1 multiplexers.

5. A combination circuit is specified by the following three Boolean functions:

F1(A, B, C) = ∑ (2, 4, 7)

F2(A, B, C) = ∑ (0, 3)

F3(A, B, C) = ∑ (0, 2, 3, 4, 7)

Implement the circuit with a decoder construction with NAND gates. Use block diagram for the

decoder. Minimize the number of inputs in the external gates.

Page | 61

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 4. Digital Circuits Implementation using Breadboard

4.1 Objectives

❖ Understanding the NAND and NOR gate characteristic and how to implement circuit

❖ To continue the previous experiment with simple digital devices and their operations using breadboard.

4.2 Equipment Required

❖ KL-22001 Basic Electricity Circuit Lab

❖ Breadboard

❖ Integrated circuits (Chips):

➢ IC 7404 (inverter)

➢ IC 7408 (2-input AND)

➢ IC 7432(2-input OR)

➢ IC 7400(2- input NAND)

➢ IC 7486 (2-input XOR)

Page | 62

4.3 Pre Lab

1) Watch the video in link bellow to understand what the breadboard is and how it is works and the
way components, including chips are connected to the breadboard as was done in experiment 1.
https://www.youtube.com/watch?v=gwcVr5VfXwA

2) Recall how to identify the pins of a chip. You may find the following presentation useful:

https://www.youtube.com/watch?v=Y9vsZTpnDDI

3) Design and implement the following circuit using the gates on the chips as shown in Figure 1(.

Your final circuit must include the IC’s, their pin numbers, and the connections between the

pins.).

a) Build Full Adder using basic gates.

b) Build the bellow circuit using universal gates.

c) Build a 3x8 Decoder (active low) using basic gates.

d) Build an 8x1 Multiplexer using basic gates.

e) Build a 1x4 Demultiplexer using NAND gates.

f) Use the 2x4 decoder to implement a 2 inputs function that acts like an equivalence gate

(XNOR): gives 1 on the output if both inputs are equal.

https://www.youtube.com/watch?v=gwcVr5VfXwA
https://www.youtube.com/watch?v=Y9vsZTpnDDI

Page | 63

4.4 Theory

4.4.1 74xx ICs Family

The first family of logic chips to really catch on was Texas Instruments 74 series

TTL. These contain bipolar transistors, run on 5V, are fast and use rather a lot of power.

However, the 74xx numbering scheme has persisted. For example, a 7400 (seven-four-zero-

zero) is a quad NAND gate. Today you can buy 74C00, 74HC00, 74HTC00, 74LS00, and

74S00. Those are 5V families. Then there is low (3.3V or lower) voltage families like

74LVC, 74AUP and so on. Some of these use bipolar transistors, others (these days most)

use CMOS transistor technology.

Note: There are several of logic ICs numbered from 74xx onwards with letters (xx) in the middle of

the number to indicate the type of gate as shown in Figure 1. Figure 1 shows some digital gates with

identification numbers and pin assignment.

Page | 64

Figure (1): DIGITAL GATES IN IC PACKAGES.

4.4.2 Breadboard

The breadboard consists of two terminal strips and two bus strips (often broken in the

center). Each bus strip has two rows of contacts. Each of the two rows of contacts are a

node. That is, each contact along a row on a bus strip is connected (inside the breadboard).

 Bus strips are used primarily for power supply connections but are also used for any

node requiring a large number of connections. Each terminal strip has 60 rows and 5

columns of contacts on each side of the center gap. Each row of 5 contacts is a node as

shown in Figure 2.

You will build your circuits on the terminal strips by inserting the leads of circuit

Page | 65

components into the contact receptacles and making connections with 22–26-gauge wire.

There are wire cutter/strippers and a spool of wire in the lab. It is a good practice to wire

+5V and 0V power supply connections to separate bus strips.

Figure (2): The breadboard. Lines indicate connected holes.

The 5V supply MUST NOT BE EXCEEDED since this will damage the ICs

(Integrated circuits) used during the experiments. Incorrect connection of power to the ICs

could result in them exploding or becoming very hot - with the possible serious injury

occurring to the people working on the experiment! Ensure that the power supply polarity

and all components and connections are correct before switching on power. You can learn

more about the breadboard by click in this link https://youtu.be/gwcVr5VfXwA

https://youtu.be/gwcVr5VfXwA

Page | 66

4.5 Procedure
In this experiment, we will use a breadboard to implement different circuits using

basic gates and NAND and NOR gates to build other gates. Before that, there were some

instructions to build a circuit and the common problems.

Building the Circuit:

Throughout these experiments, we will use TTL chips to build circuits. The steps for wiring

a circuit should be completed in the order described below:

1. Turn the power (Trainer Kit) off before you build anything!

2. Make sure the power is off before you build anything!

3. Connect the +5V and ground (GND) leads of the power supply to the power and

ground bus strips on your breadboard.

4. Plug the chips you will be using into the breadboard. Point all the chips in the

same direction, with pin 1 at the upper-left corner. (Pin 1 is often identified by a

dot or a notch next to it on the chip package)

5. Connect +5V and GND pins of each chip to the power and ground bus strips on

the breadboard.

6. Select a connection on your schematic and place a piece of hook-up wire between

the corresponding pins of the chips on your breadboard. It is better to make the

short connections before the longer ones. Mark each connection on your

schematic as you go, so as not to try to make the same connection again at a later

stage.

7. Get one of your group members to check the connections before you turn the

power on.

8. If an error is made and is not spotted before you turn the power on, Turn the

power off immediately before you begin to rewire the circuit.

9. At the end of the laboratory session, collect your hook-up wires, chips and all

equipment and return them to the demonstrator.

10. Tidy the area that you were working in and leave it in the same condition as it

was before you started.

Page | 67

Common Causes of Problems:

1. Not connecting the ground and/or power pins for all chips.

2. Not turning on the power supply before checking the operation of the circuit.

3. Leaving out wires.

4. wires into the wrong holes.

5. Driving a single gate input with the outputs of two or more gates

Modifying the circuit with the power on.

4.5.1 Verification of basic logic gates

In this task you are to verify the operations of some of the ICs.

1. Test each chip using the IC tester and make sure that it is functioning properly.

2. Place each chip shown in Figure 4.1 on the breadboard in such a way that its pins are not

short-circuited. Make sure power is off while you place IC’s and connect wires.

3. Connect GND and +5V for each chip you want to check. Connect the gate inputs to the dip

switches and the gate output to any LED. Determine the output for each possible input

combination and compare your results with the expected Truth Tables.

4. Verify the function of the 7400 (2-input NAND) chips by observing how the output of the

Gates changes in response to input changes.

a) how does the gate act if one of its two input is held at “1”?

b) how does the gate act if its two inputs are connected together?

4.5.2 Build circuits using Gates

1. Implement the following circuit in Figure 3 using basic gates and fill the truth

table (Table 1).

Figure (3): Circuit 1 using basic gates.

Page | 68

A B F1

0 0

0 1

1 0

1 1

Table 1

What is the Boolean function for above circuit?...

2. build the above circuit (In Figure 3) using NAND gates only first draw it in box

then implement it using breadboard and IC`s.

3. build the above circuit (In Figure 3) using NOR gates only first draw it in box

the implement it using breadboard and IC`s.

4. Implement the following circuit in Figure 4 using basic gates and fill the truth

table (Table 2).

Page | 69

Figure (4): Circuit 2 using basic gates.

A B C F1

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
1 1 1
0 0 0
1 1 1

Table 2

What is the Boolean function for above circuit?...

5. Draw the above circuit (in Figure 4) using NAND gates only.

Page | 70

6. Draw the above circuit (in Figure 4) using NOR gates only.

7. Implement the following circuit in Figure 5 using basic gates and fill the truth

table (Table 3).

Figure (5): build circuit 3 using basic gates.

A B F1 F2

0 0
0 1
1 0

1 1
Table 3

What is the Boolean function for above circuit?...

What this circuit do?...

Page | 71

8. (Adder) Use any needed gates shown in Figure 1 and the designs you

prepared as a pre-lab to implement the full adder, test your design by verifying

the truth table of the Full Adder.

Figure (6): Full Adder.

9. (Decoder) Use any needed gates shown in Figure 1 and the designs you

prepared as a pre-lab to implement the 2x4 decoder. Test your design by verifying

the truth table of the DECODER.

Figure (7): 2x4 decoder.

a) How do you go about adding an Enable (E) signal to the decoder? Modify the

implementation to show that. (Design Only)

Page | 72

b) How to use that to implement a 3x8 decoder. Show all work in your post lab.

10. (Multiplexer) Use any needed gates shown in Figure 1 and the design you prepared as a pre-

lab to implement the 4x1 multiplexer. Test your design by verifying the truth table of the

MUX.

Figure (8): 4X1 Multiplexer.

a. Use the just constructed 4x1 multiplexer to design a three inputs network that

gives 1 if the majority of its inputs are 1 and outputs a zero otherwise

(Design Only).

b. Implement f(x, y, z) = m(0, 1, 4, 6, 7), using 4x1 MUX. Show all work in

your post lab.

Page | 73

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 5. Sequential Logic Circuits

5.1 Objectives

❖ To understand the differences between combinational and sequential logic circuits and the applications

of various memory units.

❖ To study the operating principles and applications of various flips.

❖ To understand the operating principles of counters and how to construct counters with JK flip-flops.

❖ To study the synchronous and asynchronous counters.

5.2 Equipment Required

❖ IT-3000 Basic Electricity Circuit Lab

❖ IT-3007 J-K Flip-Flop Circuits.

❖ IT-3008 Flip-Flop Circuits.

5.3 Pre Lab

1) Using proteus build the following circuit and show why you use the components:

a) Prepare all sections.(read all experiment to find the prelab equstions)

2) For each used IC, search for its datasheet that explains exactly what a component does

and how to use it.

Page | 74

5.4 Theory

5.4.1 Sequential Circuits

Any digital circuit could be classified as either a combinational or a sequential

circuit. Combinational logic circuits implement Boolean functions. Boolean functions are

mappings of inputs to outputs. These circuits are functions of input only.

Sequential circuits are two-valued networks in which the outputs at any instant are

dependent not only upon the inputs present at that instant but also upon the past history

(sequence) of inputs. The block diagram of a sequential circuit is shown in Figure 1. The

basic logic element that provides memory in many sequential circuits is the flip-flop..

Figure (1): Sequential Circuit Block Diagram.

5.4.2 Latches

Latches form one class of flip-flops. This class is characterized by the fact that the

timing of the output changes is not controlled. Although latches are useful for storing binary

information and for the design of asynchronous sequential circuits, they are not practical for

use in synchronous sequential circuits.

5.4.2.1 The SR (Set-Reset) Latch
It is a circuit with two cross-coupled NOR or NAND gates.

a) SR latch with NAND gates:

The one with NAND gates is shown in Figure.2. Note that this circuit is an

active low set/reset latch; that means the output Q goes to 1 when S (set) input is

Page | 75

0 and goes to 0 when R (Reset) input is 0. The condition that is undefined is when

both inputs are equal to 0 at the same time.

Figure (2): SR latch with NAND gate.

b) SR latch with NOR gates:

Design the Logic Diagram, function table of the SR latch using NOR gates, and

explain how it works. (Prelab)

c) RS latch with control input:

The RS latch with control input C is shown in Figure 3. If C=0 the output Q

does not change regarding less the R and S values. If C= 1the circuit will work

normally.

Figure (3): RS latch with control input.

Page | 76

5.4.2.2 The D Latch
The D latch was developed to eliminate the undefined condition of the indeterminate

state in the RS latch. The D latch and its state table is shown in Figure 4.

Figure (4): D-Latch.

5.4.3 Flip-Flops

Like latches, flip-flops are also used for storing binary information, but the difference

is: The output change in the flip-flop occurs only at the clock edge while in the latch it

occurs at the clock level.

A flip-flop can be implemented using two separate latches. Figure 5 shows the D flip-

flop implemented with two D latches.

Figure (5): D flip flop implemented with two D latches.

There are several types of flip-flops, the common ones are D, T, and JK flip flops.

Figure 6 shows these flip flops and their function tables.

Page | 77

Figure (6): D, JK, and T flip flops.

5.4.4 Registers

Digital systems use registers to hold binary entities. The register is a collection of flip

flops; N-bit register consists of N flip-flops. Figure 7 shows simple 4-bit register

implemented with D- flip flops. All the flip-flops are driven by a common clock, and all are

reset simultaneously.

Figure (7): 4-bit Register.

Shift register is a group of flip-flops connected in a chain so that the output from one

flip-flop becomes the input of the next flip-flop. Figure 5.8 shows 4-bit shift- right register.

Page | 78

Figure (8): 4-bit shift- right register.

5.4.5 Counters

The counter is a special-purpose register; it is a register that goes through a

prescribed sequence of states.

The counters are classified into two categories: Ripple and Synchronous counters. In

ripple counters, there is no common clock; the flip-flop output transition serves as a source

for triggering other flip-flops. In synchronous counters, all flip flops receive a common

clock. Figure 9 shows 3-bit ripple and synchronous counters.

Figure (9): (a) 3-bit ripple counters, (b) 3-bit synchronous counter.

Page | 79

5.5 Procedure

5.5.1 Latches and Flip flops

A) Constructing RS latch with Basic Logic Gates

Use IT-3008 module to construct the circuit shown in Figure 10. Connect inputs A3, A4 to

Pulser Switches SWA A (TTL), SWB B (TTL). Connect outputs F6 and F7 to Logic

Indicators L1, L2. Follow the sequences in Table 1.

Figure (10): RS latch.

Table 1

A3 A4 F6 F7

0 0

0 1

1 0

1 1

Page | 80

B) Constructing RS latch with control input

Use IT-3008 module to connect the circuit shown in Figure 11. Connect inputs A1, A5 to

Pulser Switches SWA A, SWB B and follow the input sequence in Table 2.

Figure (11): RS Latch with control input.

Table 2

C) Constructing 9-to-4-Line Encoder with TTL IC

Use IT-3008 module to construct the circuit shown in Figure 12. Connect A1 to SW1; CK2

to SWA A and F6 to L1. Follow the sequences in Table 3.

A1 A5 F6 F7

0 0

0 1

1 0

1 1

Page | 81

Figure (12): D Latch.

Table 3

D) Constructing 2-to-4 Line Decoder with Basic Gates

Use IT-3008 module to construct the circuit shown in Figure 13. Connect CK2 to SWB B

output; A1 to SW0; A5 to SW1; F6 to L1. Follow the sequences in Table 4.

Figure (13): JK Latch.

CK2 A1 F6

0 0

0 1

0

1

Page | 82

Table 4

E) Constructing JK Flip-flop with master- slave RS latches
The master-slave flip-flop cancels all timing problems by using two SR flip-flops

connected with each other. First flip-flop acts as the “Master” circuit, which triggers on the

leading edge of the clock pulse while the other acts as the “Slave” circuit, which triggers on

the falling edge of the clock pulse. This results in the two sections; the master section and the

slave section being enabled during opposite half-cycles of the clock signal.

Use IT-3008 module to construct the circuit shown in Figure 14. Connect CK2 to Pulser

switch. Connect CK1 to SWA A output; J to SW1; K to SW0; F1, F2, F6, F7 to L3, L2, L1

and L0 respectively. Follow the sequences in Table 5

Master Latch Slave Latch

Figure (14): JK Flip-Flop.

CK A1 A5 F6

0 0

0 1

1 0

1 1

Page | 83

Table 5

5.5.2 Registers

A) Constructing 2-to-1-Line Multiplexer with basic Gates

1. Block Shift Register 1 of module IT-3008 will be used to construct the circuit

shown in Figure 15.

Figure (15): Shift Right Register.

2. Connect B (clear) to SW0; A (I/P) to SW1; CK to SWA A output; F1, F2, F3, F4

to L1, L2, L3, L4 respectively.

3. Set SW0 to “0” to clear B and then set SW0 to “1”.

4. Follow the input sequence for A(I/P) below, and observe output display at F1, F2,

F3 and F4:

a) at A= “1”, send in a CK signal from SWA

b) at A= “0”, send in a CK signal from SWA

c) at A= “0”, send in a CK signal from SWA

d) at A= “1”, send in a CK signal from SWA

CK K J F1 F2 F6 F7

0 0

0 1

1 0

1 1

1 1

Page | 84

B) Constructing 8-to-1 Line Multiplexer with IC

Use Shift Register 2 module in IT-3008 which is 4-Bit Shift Register with serial and

parallel synchronous operating modes, it has serial input (B1) and four parallel (A-D) Data

inputs, and four Parallel Data outputs (QA–QD) as shown in Figure 16.

Figure (16): shift register with serial and parallel load.

1. Complete the following connections:

Inputs A, B, C, D to SW0, SW1, SW2, SW3 Outputs F1, F2, F3, F4 to

L0, L1, L2, L3, B1 (I/P) to DIP2.0, A1 (MODE) to DIP2.1.

Table 6

2. Connect CK (C1) to the clock generator TTL level output at 1Hz and change data

at B1 with DIP2.0. Follow the input sequences for A1 in Table 7. Observe and

record the outputs.

Page | 85

Table 7

3. Connect LOAD (D1) to the clock generator TTL level output at 1Hz. Set A1 to

“1” and follow the input sequences for A, B, C and D in Table 8. Observe and

record the outputs.

Table 8

5.5.3 Counters

A) 2-bit Synchronous Counter

1. Use IT-3007 module to implement the 2-bit synchronous counter shown in Figure 17.

2. Connect CLK input to pulser switch.

3. Connect counter outputs Q1 and Q0 to indication lamps.

4. Apply clock pulses to CLK input. Observe and record the outputs in Table 6 (a)

5. Apply counter outputs Q1 and Q0 to seven segment display. Observe and record the outputs in

Table 9 (b).

Page | 86

Figure (17): 2-bit Synchronous Counter.

Table 9

B) Using Multiplexer to implement a Logic Function

Divide-by-8 counter is 3-bit counter that counts from 0-to-7:

1. Use the IT-3007 module to implement the 3-bit (divide by eight) Ripple counter shown in Figure 18.

2. Connect CLK input to pulser switch.

3. Connect counter outputs Q2, Q1 and Q0 to indication lamps.

4. Apply clock pulses to CLK input. Observe and record the outputs in Table 10 (a).

5. Apply counter outputs Q2, Q1 and Q0 to seven segment display. Observe and record the outputs in

Table 10 (b).).

Page | 87

Figure (18): 3-bit Ripple Counter.

Table 10

Task2: Modify the circuit in Figure 17 to be 3-bit Synchronous Counter. Attach the design with this

experiment report.

Page | 88

C) BCD Counter

Locate the BCD counter (IC 7490) on IT-3008 module, which is shown in Figure 19.

Functional block diagram of U1 is shown in Figure 20.

3. Connect C3, C4 to SW0 and SW1; D1, D2 to SW2 and SW3; F1~F4 to L1~L4,

A2 to SWA A output; B2 to SWB B output.

4. 2. Connect F1 to B2, set C3, C4, D1 and D2 to ground and A2 to SWA A pulse.

Measure and record the outputs F1, F2, F3, F4.

Figure (19): IC 7490 BCD Counter.

Figure (20): IC 7490 BCD Counter.

Page | 89

D) Divide-by-8 counter using BCD chip counter

6. Connect R0(2) (pin3) to +5V and connect R0(1) (pin2) to QD (pin11) output. This will make

counter reset after 111 (or 7). WHY?

7. Connect clock A2 (pin14) to pulser switch.

8. Connect the outputs A, B, C, and D to indication lamps

9. Apply clock pulses to A2 and observe the count sequence (0000-0111).

Task 3: change the connection of counter in Figure 5.19 to count from:

- 0-to-5

- 0-to-4

5.6 Discussion

1. Although latches are useful for storing binary information, they are rarely used in sequential circuit

design, why?

2. What is the disadvantage of the RS flip flop.

3. What is the difference between “synchronous” and “ripple” counters?

Page | 90

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 6. Sequential Logic Circuits using Breadboard and IC’s

6.1 Objectives

❖ To learn how to use some Integrated Circuits (ICs) such as seven-segment display driver/decoder

(IC7447) and counters (IC7490).

❖ To understand the function of the seven-segment display and how to find its pin assignment.

❖ To build one or more-decade counters with seven-segment displays.

6.2 Equipment Required

❖ IT-3000 Basic Electricity Circuit Lab.

❖ 7447 BCD to Seven-Segment Decoders/Drivers.

❖ 7490 Decade and Binary Counters.

6.3 Pre Lab
1) What is the appropriate display type (common anode/common cathode) that must be used

with 7447 display decoders? Explain your answer.

2) Assuming that the turn-on voltage for the LEDs is 1.7v, what is the proper value of the

resistors to be connected between the 7447 decoder and the seven-segment display, to limit

the current in the LED segments to 10mA?

Page | 91

3) Assume that the resistors provided in the lab are 220Ω. What would the current flowing into

the LEDs be?

4) Design a decade counter circuit using the 7490 counters, the 7447 decoder and a seven-

segment display. Show the pin numbers on the ICs in your design.

6.4 Theory

6.4.1 Seven-Segment Display

The seven-segment LED display is a common device in consumer electronics, from

calculators to clocks to microwave ovens. In this lab, you will learn the basic principles of

operation of the seven-segment display as well as the process of converting BCD values to

the proper signals to derive this display.

The display has seven separate bar-shaped LEDs, arranged as shown bellow. In

addition, many seven-segment displays have one (or two) circular LED used as a decimal

point.

Figure (1): Seven-segment Display.

Inside the seven-segment display, one end of each LED is connected to a common

point, which is tied either to ground or to the positive supply, depending on the device. If

the seven-segment display is designed to have the common connection tied to the positive

supply (+5V), as shown in Figure 2 (left-hand side), it is called a common anode

configuration. To turn on these LED segments, the inputs logic must be set to low.

Page | 92

If the seven-segment display is designed to have the common connection tied to the

ground (0V), as shown in Figure 2 (right-hand side), it is called a common cathode

configuration. To turn on these LED segments, the inputs logic must be set high.

Figure (2): common anode/cathode displays.

In both configurations, current-limiting resistors are used to lower the amount of

current that the driver sends into the LEDs. This achieves two goals:

1- Control the brightness of the LEDs.

2- Prevent over-current (that may burn the LEDs).

6.4.2 BCD-to-seven-segment Decoder

A BCD-to-seven-segment decoder is a logic circuit used to convert the input BCD

into a form suitable for the seven-segment display.

In this lab the IC type 7447 decoder will be used. The 7447-pin assignment is shown

in Figure 3. Its pin description is shown in Table 1.

Page | 93

Figure (3): 7447 pin assignment.

Pin name Description

A, B, C, D BCD inputs: D is the most significant input (DCBA)

a, b, c, d, e, f, g Decoder output (Active Low)

RBI Ripple Blanking Input (Active Low)

BI/RBO
Blanking Input (Active Low)

Ripple Blanking Output (Active Low)

LT Lamp Test input (Active Low)

Table 1

- LT should be high for normal operation and when pulled low, all seven-segments

will be turned on.

- RBI must be high if blanking of a decimal zero is not desired.

- BI/RBO can be used as input or output. If BI is high, and LT is low, all 7

segments are on. This function can be used to see if all the LED segments are

working. BI is used to turn off all these segments, when pulled low. If A, B, C, D,

and RBI are all low, and LT is high, then all 7 segments are off. In this situation, -

Page | 94

the RBO goes low (response condition).

- For normal operation without blanking, the three inputs: LT, RBI, and BI/RBO

should be connected to +5V (given that they are active low).

6.4.3 Counter

In this lab the IC type 7490 counter will be used. The 7490-pin assignment is shown

in Figure 4 and reset/count function table is shown in Table 2.

Figure (4): 7490 counter pin assignment. Table 2: Reset/count function table.

Page | 95

6.5 Procedure

6.5.1 BCD counter

A) Testing lamps in the display

1. Place the display and the 7447 chips on the breadboard.

2. Implement the circuit shown in Figure 5.

3. Connect pin 4 and pin 5 of the 7447 decoders to the +5V.

4. Connect pin 3 (LT) of the 7447 decoders to the ground. All 7 segments must

be turned on. (This is to verify that all segments in the display are working

properly).

Figure (5): display-decoder connection.

B) Blanking all segments

Connect pin 4 (BI) of the decoder to the ground. All 7 segments must be turned

off. You may leave the circuit connected (to be used next).

C) Implementing one decade counter

In this part, you will build a counter that counts from 0 to 9.

1. Connect the circuit that you designed in part 4 of the pre-lab. Show the

design and the connected circuit to your instructor/assistant before

Page | 96

turning on the power.

2. Apply clock pulses to pin 14 of the 7490-counter using Pulser Switch

(SWA).

3. Observe the counting sequence on the display D1 and complete Table 3

4. Apply clock pulses to pin 14 using “pulse generator” of the IT-3000

Basic Electricity Circuit Lab. Observe the count sequence.

D1

Table 3

6.6 Post Lab

1. Design a two-decade counter that counts from 00 to 99.

2. Add additional input to your design that can be used to reset the counter.

3. Modify the counter to count to 59 (without Reset).

Page | 97

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 7. Constructing Memory Circuits Using Flip−Flops

7.1 Objectives

❖ Understand the basic structure of Random Access Memory (RAM).

❖ Understand and test the circuit of 64-bit Random Access Memory (RAM).

7.2 Equipment Required

❖ IT-3000 Basic Electricity Circuit Lab

❖ IT-3011 Memory Circuits.

7.3 Theory

7.3.1 CONSTRUCTING RANDOM ACCESS MEMORY (RAM) WITH D FLIP-

FLOP

Two different types of basic structure for RAM given below:

1) In the RAM circuit of Figure 1 (a), the input and output are not separated. There

are two control terminals: one is the R/W terminal (R for READ or OUTPUT, W

for WRITE or INPUT) and the other one is the ENABLE terminal.

Page | 98

Figure (1): (a) One bit memory using a flip flop. (b) Two-bit memory with 1x2 decoder.

- When CS=0, tri-state gates U1 and U2 do not operate, so data input is not

possible, the flip- flop output Q is not sent to the I/O terminal.

- When CS=1, W/R controls the D flip-flop. When W/R' =1, U1 opens but U2

does not, I/O will accept data input. If W/R'=0, the exact opposite will happen

and I/O act as the data output.

- Figure 1 (b) shows another connection that will increase the RAM capacity.

When CS1=1, RAM1 I/O1 and I/O2 are selected. Address line A is used to

select between RAM1 and RAM2. Since there is only one address line, we

can only select from 2 RAMs. In Figure 1 (b), each CS can only select a 2-bit

RAM, so the total capacity is 2×2.

1) In Figure 2, a 2-address (2-bit) RAM circuit has independent input and

output. When Address=0, input D1 is enabled and the content of D1 will

be made available at the output.

When Address=1, input D2 is enabled and the content of D2 will be made

available at the output. The ENABLE terminal must be activated in order

to allow the output to correspond with the constantly changing inputs.

Page | 99

Figure (2): Implementation of the two-bit memory presented in Figure 1 (a).

Commercial random-access memories may have a capacity of thousands of

words and each word may range from. The logical construction of a large

capacity memory would be a direct extension of the configuration as shown in

Figure 3. The two address inputs go through a 2x4 decoder to select one of the

four words.

Figure (3): Logical construction of a 4x4 RAMS.

Page | 100

7.3.2 64-BIT RANDOM ACCESS MEMORY (RAM) CIRCUIT

Like ROM, RAM is also a memory element. The data selection process is controlled

by the address selectors. The length of data is related to the number of data variations. For

example, if there are 4 data then 2^4 or 16 data variations exist.

The number of address lines determines the number of locations. If there are 4

address lines, then 2^4or 16 locations exist. A 4-bit data can be stored in each location,

since the total capacity is 16×4, where the 4 is the number of data while 16 is the number of

address lines.

Figure 4 shows the 7489 IC, which is a 16×4 memory with 64 memory capacities.

Also, its function table.

Figure (4): Block diagram of 16x4 RAM chip.

- When ME' = 0 and WE' = 0, the memory is enabled, and the input process starts. The

input and output terminals are separated. The output terminals are open-collector type

so resistors “RX×4” must be added to the supply voltage. Since the output terminal of

7489 is open-collector type, the outputs can be connected in parallel, as shown in

Figure 4. The operating sequence will be controlled by ME' and WE'.

- When A4A5=00, A is selected, ME' and WE' of B, C and D all equal to “1”.

Similarly, when A4A5=01, B is selected, ME' and WE' of C and D all equal to “1”. E

is 2-4 decoders with “0” as its output. The unselected outputs are in high or “1” state.

Page | 101

- Since the outputs will have high impedance when ME' and WE' are both “1”, each

R/W' control of 7489 are connected to an OR gate to ensure that when ME' = “1”,

WE' will be equal to “1” too.

- When ME' = “0”, WE' is controlled by external R/W' control so that the “READ”

operation is

performed if R/W'= “1”. The “WRITE” operation is performed when R/W'= “0”.

- The 7488 is a 256-bit open-collector ROM which has similar structure as the 7489.

Their methods of expansion are similar as well.

Figure (5): Block diagram of 16x4 RAM chip.

Page | 102

7.4 Procedure

7.4.1 Latches and Flip flops

A) RAM block with D Flip-Flop of module IT-3011 which is shown in Figure 6 will be

used in this part.

Figure (6): RAM block with D Flip-Flop of module IT-3011.

B) Connect E1, S1, D2, D1 to Data Switch SW0~SW3 respectively. Connect outputs F1,

F2, F3 to Logic Indicators L1~L3. Refer to the input sequence in Table 1 and record all

outputs. Discuss and explain the results to your TA.

Table 1

Input Output

E1 S1 D2 D1 F3 F2 F1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Page | 103

C) Then, set module IT-3011 and locate block RAM Circuit. Insert connection clip

according to Figure 7, connect +5V, +15V of module IT-3011 to the +5V, 15V output

of fixed power supply respectively.

Figure (7): Open Collector 4x4 RAM.

D) Connect inputs D4~D1 to DIP Switch 1.0~1.3; A3~A0 to DIP 2.0~2.3; S1 (ME) to

Pulser Switch SWAA; S2 to Data Switch SW0. Outputs are indicated by CR1~CR4.

E) Set SW0 (WE') to “0” for the “WRITE” task. Start from address 0000, input data to

A0~A3 by setting the DIP switch. Activate SWA once to write the data into its

assigned address. Repeat this process for all the addresses, ending with 1111. Record

what was written into each address in Table 2 under the “WRITE” column.

Page | 104

Table 2

F) Now set SW0 (WE’) to “1” for the “READ” task and connect S1 (ME') to Pulser

Switch SWA. Observe states of CR1~CR4 and record under the “READ” column in

Table 3.

Page | 105

Table 3

- What you not from two table?

G) Disconnect SWA and “A” clip, then turn off the main power switch of IT- 3000 for

about 10 seconds and turn it on again. Change address and press SWA then attempt to

read the data. Are they still stored in the RAM?

H) Disconnect “B” clip, VCC disappears. Repeat Step 5 to see if the data are still stored in

the RAM.

7.5 Post Lab

1. Design a 4x16 RAM using four 4x4 RAMS.

2. Although D latches are useful for storing binary information, they are not used in RAM circuit

design, why?

Page | 106

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 8. Introduction to QUARTUSII Software

8.1 Objectives

❖ To learn how to use QUARTUS II and write code using Verilog HDL language.

❖ To learn how test code and make symbol from code.

❖ To learn about FPGA and how download code from QUARTUS II to FPGA

8.2 Equipment Required

❖ QUARTUS II program.

❖ FPGA Board

8.3 Pre Lab

1) Here is a link to an HDL tutorial:

https://www.youtube.com/playlist?list=PLnyw1IVZpaTukmt80aNs7gT74U3vboDYr

2) Quartus II introduction:

https://www.youtube.com/watch?v=uG1GTRelG3I

https://www.youtube.com/watch?v=TdLqbgrVREQ

3) Download Quartus from this link below:

http://www.mediafire.com/file/eqd7xidoan3exqv/90_quartus_free.exe

4) Using Quartus to build the following circuit:

a) Build half adder on data flow.

https://www.youtube.com/playlist?list=PLnyw1IVZpaTukmt80aNs7gT74U3vboDYr
https://www.youtube.com/watch?v=uG1GTRelG3I
https://www.youtube.com/watch?v=TdLqbgrVREQ
http://www.mediafire.com/file/eqd7xidoan3exqv/90_quartus_free.exe

Page | 107

b) Build the Ful adder using half adder structural.

c) Build a 2-bit counter on behavioral.

d) Build an 8x1 Multiplexer on behavioral.

e) Build a 2x4 decoder using basic gates (structural).

f) Show the wave form for above parts.

Page | 108

8.4 Theory

8.4.1 QUARTUS II Program

Quartus enables analysis and synthesis of HDL designs, which enables the developer

to compile their designs, perform timing analysis, examine RTL diagrams, simulate a

design's reaction to different stimuli, and configure the target device with the programmer.

Quartus includes an implementation of VHDL and Verilog for hardware description, visual

editing of logic circuits, and vector waveform simulation.

Figure (1): QUARTUS II logo.

8.4.2 FPGA Board

FPGA stands for field-programmable gate array. That’s quite a mouthful, so let’s start

with a basic definition. Essentially, an FPGA is a hardware circuit that a user can program to

carry out one or more logical operations. Taken a step further, FPGAs are integrated circuits,

or ICs, which are sets of circuits on a chip—that’s the “array” part. Those circuits, or arrays,

are groups of programmable logic gates, memory, or other elements.

With a standard chip, such as the Intel Curie module in an Arduino board or a CPU in

your laptop, the chip is fully baked. It can’t be programmed; you get what you get. With these

chips, a user can write software that loads onto a chip and executes functions. That software

can later be replaced or deleted, but the hardware chip remains unchanged.

For FPGA, the programming can be a single, simple logic gate (an AND or OR

function), or it can involve one or more complex functions, including functions that, together,

Page | 109

act as a comprehensive multi-core processor.

Figure (2): FPGA Board.

Page | 110

8.5 Procedure

8.5.1 How to create project in QUARTUS II
• Step1: Run the QUARTUSII software: double click on the QUARTUS II

item in the desktop.

• Step2: When you open QUARTUS II the windows in Figure 3 will appear,

then select option Create New Project Wizard or you can start new project by

select option File then select New Project Wizard as shown in Figure 4.

Figure (3): How to create new project (first way).

Page | 111

Figure (4): How to create new project (second way).

• Step3: Then the window in Figure 5 will be shown, press next for First

window.

Page | 112

Figure (5): First Windows.

• Step4: Then Later, a window will appear asking you to enter the project storage

location and the name of the project. After filling out the information, you will be

clicked on the next option at the bottom of the screen. As shown in Figure 6. Then

another window will appear asking to enter previously existing files. If there are

no files, click on the Next option.as shown in Figure 7.

Page | 113

Figure (6): Project Folder, Project Name, Top-Level-Entity.

Page | 114

Figure (7): Add existing files.

• Step5: In Figure 8, show the windows where we can choose the family of FPGA

we went to use and the number of FPGA, then select Finish.

Page | 115

Figure (8): choose family and number for FPGA.

8.5.2 How to write code using Verilog HDL

1. To make new File, press File > New, the window in Figure 9 will appear.

Page | 116

Figure (9): to create new files.

- There are three choice in this window:

A) Verilog HDL File: use to write the code Verilog HDL.

B) Vector Waveform File: use to test code.

C) Block Diagram /Schematic File: to make symbol from code.

2. For this lap we choose Verilog HDL File from Figure 9. Then a white screen will

appear on which we will write the code. the Figure 10 show simple code for half

adder.

Page | 117

Figure (10): simple code for half adder.

Important note: This file is used to enter your Verilog code; you must save the file as the name of

the module. Look to Figure 11.

Figure (11): how to save file.

Page | 118

3. To run code Right click on the file name and select option Set as Top-Level

Entity then click (start compilation) select this icon in top of the screen or

clicking on processing> start compilation. If there is any error, you can see in

white area in bottom of screen.

Figure (12): how to run code.

8.5.3 How to test code

1. To test code, we choose Vector Waveform File from Figure 9. This File is used to check the

functionality of the design works as expected or not. Figure 13 shows a Vector waveform

File.

White screen

Page | 119

Figure (13): Vector waveform File.

2. Then right-click on the left most side of the window (under Name), then click insert

node or bus, as shown below

Page | 120

Figure (14): insert node or bus.

3. Click on Node Finder and then on List (using the Filter pins: all) and note that file name

in look in option as shown in Figure below. Select all inputs and the output by clicking on

(>>) (you can select one by one).

Page | 121

Figure (15): Select inputs and outputs.

4. You can select the intervals when you want the inputs to be one or zero, either by

shadowing the interval, then press the one level in the tool bar, or by write clicking

the name, then select value > count value, the change the start value, the end value,

and the radix as shown in the following figure:

Page | 122

Figure (16): put value for inputs.

5. Now save the file with the same name as your project and in the same folder.

6. Then, from Processing > Simulator Tool, the window in Figure 14 will appear:

Page | 123

Figure (17): to show result.

7. The generated waveform is inserted as simulation input, then press on

Generate Functional simulation Netlist. Then Start after the simulation

finish press on Report to see the output.

8.5.4 How to make symbol from code, make diagram and Schematic File

1. To start new File, press File > New, the window in Figure 9 will appear press

Block Diagram /Schematic File.

2. The window in Figure (18) will appear, to enter components of our design double

click anywhere on the schematic window or select the symbol tool (The little

and gate).

Page | 124

Figure (18): diagram window.

3. This opens the symbol window in which available libraries, including the standard

QUARTUSII library, open this library by clicking on the little plus sign next to it,

then select primitives, and then select logic, then select the gate you want in your

implementation.as shown in Figure 19.

Figure (19): choose components.

Page | 125

4. You have to define the inputs and outputs of your implementation, and you do

so by opening the symbol window> primitive> pin, the following figure shows

all the design components that must now be connected, we will build half adder

using gates:

Figure (20): build half adder using gates.

5. To connect the components of the previous figure, select the 90o thin line with

the dots on its ends on the tool bar, this makes your cursor wiring tool that can

be used to connect you circuit. When done, disable the wiring tool by clicking

the arrow on the tool bar.

6. Rename input and output ports to the variable names of our design, to name a

pin, either double click it to open its pin properties window, or right –click it,

and select properties from the pull-down menu that shows up.

7. Save your design, and make sure it is named the same as your project, the

following figure shows the completed block diagram of our design.

Page | 126

Figure (21): connect components.

8. To run first Right, click on the file name and select option Set as Top-Level

Entity then click (start compilation) select this icon in top of the screen

or clicking on processing> start compilation . If there is any error, you can see

in white area in bottom of screen.

9. To test diagram, we repeat the same steps in previous section.

10. We can make symbol from code first Right click on the file name and select

option Set as Top-Level Entity then right click in name of cade file and

choose Create Symbol File for Current File. as shown in Figure 22.

Use to connect between components

Page | 127

Figure (22): create symbol.

11. we want to use this symbol in diagram we search name of symbol (code

name).as shown in Figure 23.

Figure (23): use symbol in diagram.

Page | 128

8.5.5 How to Download code in FPGA and choose inputs and outputs in

board

1. After verifying that the design works as expected we can install the code on the

hardware (FPGA).

2. To check that the correct device is selected, this can be done using Assignments

> Device.

3. We need 2 switches for A and B (Inputs). 2 LEDs to see the output are needed.

We have to use the user manual of DE1 to figure out the location of the switches

and the LEDs. The Tables below show the location of the switches.

Figure (24): pin assignment.

Figure (25): Pin Assignment for Switches. Figure (26): Pin Assignment for LEDs.

Page | 129

4. To select which inputs and outputs we use we select Assignments > Assignments

Editor then the window in below will appear.

Figure (27): Pin Assignment Editor.

5. Assign PINs for the Inputs and Outputs. You can assign them by selecting all the

schematic file then right click Locate > Locate in assignment editor, the following

Figure appears:

Figure (28): choose inputs and outputs.

6. Select Pin in the category and select a switch for input. After that save the pin

assignment. Then the pins will appear in diagram.as shown in Figure 29.

Page | 130

Figure (29): choose inputs and outputs in board.

Figure (30): show the pins in diagram.

7. Re-compile the Project so that the new changes in the PINs take place. If the

project name differs from you block diagram file, then you have to set the file as

top-level entity as mentioned before. Download the Program on the FPGA Tools

>Programmer.

Page | 131

Figure (31): download code in FPGA.

8.6 Task in lab
1. Create schematic symbols as shown in the figure, Use: Y3Y2Y1Y0 = 0111. What does this circuit

do? Use Verilog to implement the circuit and run a meaningful simulation for this circuit.

2. Use Verilog HDL to implement a 2-to-1 MUX. Use Verilog HDL to implement a Full Adder. Create

schematic symbols for both the MUX and the Full adder, then connect them as shown in the figure.

Run a meaningful simulation for this circuit.

Page | 132

3. Use Verilog HDL to implement a 2-bit counter with direct reset input (RESET). Use Verilog HDL to

implement a 2-to-4 Decoder. Create schematic symbols for both the counter and the decoder, then

connect them as shown in figure below. Run a meaningful simulation for this circuit.

Page | 133

8.7 Post Lab

- Design the following circuit:

Page | 134

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 9. A Simple Security System Using FPGA

9.1 Objectives

❖ To practice building different digital components using Quartus either by building a Verilog

codes or Block diagrams.

❖ Learning how to put some of the digital components, you have studied and build in pervious

lab sessions, together to build useful systems.

❖ To become more familiar with FPGA programming.

9.2 Equipment Required

❖ A computer with Quartus II (7.2 +) and USB driver installed

❖ Altera DE1 system with its datasheets. (For FPGA pins map)

9.3 Pre Lab (Bring a soft copy of your prelab with you to the lab)

1) Prepare each part of the procedure section where it says (Pre Lab).

2) NOTE: It is important that you come prepared, as this will reflect your work time during the

lab plus it will be a critical variable in the evaluation of your lab report:

Page | 135

9.4 Theory

In this experiment, we are going to build a simple security system using Altera

Quartus software. Then we will program and download this system on the FPGA board.

This security system is simply a 2-digit digital lock. The user enters a number of two digits,

such that, the digit ranges from 0 to 3. Thus, every digit has a lower limit of 0 and an upper

limit of 3. The number is entered using a keypad (using the 91 switch keys build in our

FPGAs). Each digit is represented by a 7-segment display and if the total number entered on

the displays equals to XX a green led is on; allowing us to pass. Otherwise, a red LED is

always on, blocking us from passing.

Figure 1 depicts this security system architecture.

Figure (1): The Security System Architecture.

Page | 136

Figure (2): High level view of the system.

As Figure 1 shows, this security system comprises the following components:

9.4.1 4x2 Priority Encoder

The normal digital encoder is a combinational circuit that encodes 2^n input lines by n

output lines. In other words, it generates the binary code equivalent of the input line, which

is active high. However, this kind of encoders has a problem. It only works when only one of

the inputs is active. In other words, if there is more than one input line active, the encoder

will generate the wrong code.

This issue can be resolved using the priority encoder. This kind of encoders prioritizes the

level of each input. If multiple input lines are active, the output code will correspond to the

input line with the highest priority as shown in Figure 3.

The user will use this priority encoder to choose what value to view on a 7-segment display

(values range from 0 to 3 in decimal), for example, if the user switches SW1 to high and keeps

SW2 and SW3 low then the output of the encoder will be b’01.

Figure (3): 4x2 Priority Encoder.

Page | 137

9.4.2 Enable Port

The purpose of this port is to allow the user to select which memory system is active,

and hence which 7- segment display to use, for example, if SW4 is high then the En pin of

the first memory system is enabled and ready to read the user input on the 4x2 priority

encoder.

Note: The enable pin of the decoder must be active low while switching between

selection lines of the decoder.

9.4.3 segment display driver

This driver is used to convert the output of the priority encoder to the proper input for

the 7- segment displays, the output of the driver is first stored in a memory unit before it is

transferred to a 7- segment (depends on which memory system is enabled using the 2x4

decoder). Figure 4 show 4x7 7-segment decoder in this experiment we will use 2x7 7-

segment decoder .

Figure (4): 7 -segment decoder.

9.4.4 Memory System

The purpose of such system is to ensure that the value selected by the user to display

on a certain 7- segment is kept there when the user switches to select another 7-segment.

Each memory system consists of seven D- flip-flops and 2x1 MUXs as shown in Figure 5.

When the enable pin equals 0, the output of each DFF becomes its input at every

clock cycle. On the other hand, when the Enable pin becomes 1, the data coming from the

7-segment driver is stored in the each DFF. The output of each DFF is sent on a data bus to

Page | 138

a 7-segment display.

Note: For each 7- segment display, we need a memory system block

Figure (5): Memory System.

9.4.5 Comparator
The input of each 7-segment display is connected also to a comparator. every

comparator has a built-in value (reference) which is compared with the value of the 7-

segment display. If both values are equal, then the output of the comparator is 1, and it is 0,

otherwise. For example, if one of the comparators has a reference value equals 5, then its

output will be 1 if and only if the input is equal to=7'b0100100 (which is the value of 5 in

the 7-segment display). The purpose of the comparator is to lock/unlock the security system.

9.4.6 2-input AND gate
This AND gate will make sure that the two 7-segment displays have the correct

combination. In other words, if each comparator output is “1”, then the AND gate output

will be “1”, and the green light is ON. Otherwise, the red light will be always ON.

Page | 139

9.5 Procedure

1. Design a 4 x 2 priority encoder by writing and simulating the Verilog code shown

in Figure 6using Quartus. (Pre LAB).

Figure (6): 4 x 2 Priority Encoder Verilog Code.

2. Design the 7-segment display driver by writing and simulating the Verilog code shown in

Figure 7 using Quartus. (Pre Lab).

Page | 140

Figure (7): 7-Segment Display Driver Verilog Code.

3. Write and simulate the Verilog code of a D- Flip Flop using Quartus (Pre Lab)

4. Write and simulate the Verilog code of a 2x1 MUX using Quartus (Pre Lab).

Note: The MUX should behave as explained in the memory system section

(check back the theory).

5. Use a block diagram to build the design shown in Figure 8.

6. Write and simulate the Verilog code of the comparator shown in Figure 9 using

Quartus

Note: for simplification, we will build one comparator based on the reference

value X (in this case, it is 5). You can build four different comparators with four

different values to compare with.

Page | 141

Figure (8): Memory System Block Diagram.

Page | 142

Figure (9): Comparator Verilog Code.

7. Build and design the security system using the components you built in the

previous steps. The final block design should look like the one in Figure 10.

Assign pins values to the security system design you just built and then download

the system on the FPGA board.

Page | 143

Figure (10): The Security System Final Block Diagram.

Page | 144

9.6 Do in lab

6. Change in code to make user enter number from 0-7.

7. Make your system take four different password numbers.

9.7 Post lab

1. Make your system work without encoder (let user enter number directly).

2. Write code for 7 segment drivers working on common anode.

Page | 145

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 10. Simple Computer Simulation

10.1 Objectives

In this experiment we are going to design the Verilog HDL control sequence for a simple computer

(SIMCOMP). The SIMCOMP is a very small computer to give the students practice in the ideas of

designing a simple CPU with the Verilog HDL notation.

10.2 Equipment Required
❖ A computer with Quartus II

10.3 Pre Lab

1) Read the experiment to find the prelab.

Page | 146

10.4 Theory

10.4.1 Basic Computer Model - Von Neumann Model

Von Neumann computer systems contain three main building blocks: the central

processing unit (CPU), memory, and input/output devices (I/O). These three components

are connected together using the system bus. The most prominent items within the CPU are

the registers: they can be manipulated directly by a computer program, See Figure 10.1:

Function of the Von Neumann Component:

Memory: Storage of information (data/program)

Processing Unit: Computation/Processing of Information

Input: Means of getting information into the computer. e.g., keyboard, mouse

Output: Means of getting information out of the computer. e.g., printer, monitor

Control Unit: Makes sure that all the other parts perform their tasks correctly and at the

correct time.

Figure (1): Von Neumann computer systems.

10.4.2 General Registers

1) One of the CPU registers is called as an accumulator AC or 'A' register. It is the

main operand register of the ALU it is used to store the result generated by ALU.

Page | 147

2) The data register (MDR) acts as a buffer between the CPU and main memory. It

is used as an input operand register with the accumulator.

3) The instruction register (IR) holds the opcode of the current instruction.

4) The address register (MAR) holds the address of the memory in which the operand

resides.

5) The program counter (PC) holds the address of the next instruction to be

fetched/execution.

Additional addressable registers can be provided for storing operands and address. This can

be viewed as replacing the single accumulator by a set of registers. If the registers are used for

many purposes, the resulting computer is said to have general register organization. In the case

of processor registers, a register is selected by the multiplexers that form the buses.

10.4.3 Communication Between Memory and Processing Unit

Communication between memory and processing unit consists of two registers:

Memory Address Register (MAR). Memory Data Register (MDR).

To read,

1- The address of the location is put in MAR.

2- The memory is enabled for a read.

3- The value is put in MDR by the memory.

To write,

1- The address of the location is put in MAR.

2- The data is put in MDR.

3- The Write Enable signal is asserted.

4- The value in MDR is written to the location specified.

10.4.4 Generic CPU Instruction Cycle

The generic instruction cycle for an unspecified CPU consists of the following stages:

1) Fetch instruction:

Page | 148

Read instruction code from address in PC and place in IR. (IR ← Memory [PC])

2) Decode instruction:

Hardware determines what the opcode/function is and determines which

registers or memory addresses contain the operands.

3) Fetch operands from memory if necessary:

If any operands are memory addresses, initiate memory read cycles to read

them into CPU registers. If an operand is in memory, not a register, then the

memory address of the operand is known as the effective address, or EA for short.

The fetching of an operand can therefore be denoted as Register ← Memory [EA].

On today's computers, CPUs are much faster than memory, so operand fetching

usually takes multiple CPU clock cycles to complete.

4) Execute:

Perform the function of the instruction. If arithmetic or logic instruction, utilize

the ALU circuits to carry out the operation on data in registers. This is the only

stage of the instruction cycle that is useful from the perspective of the end user.

Everything else is overhead required to make the execute stage happen. One of the

major goals of CPU design is to eliminate overhead and spend a higher percentage

of the time in the execute stage.

5) Store result in memory if necessary:

If destination is a memory address, initiate a memory write cycle to transfer the

result from the CPU to memory. Depending on the situation, the CPU may or may

not have to wait until this operation completes. If the next instruction does not need

to access the memory chip where the result is stored, it can proceed with the next

instruction while the memory unit is carrying out the write operation.

Below is an example of a full instruction cycle which uses memory addresses for

all three operands:

1- Mull product, x, y

Page | 149

2- Fetch the instruction code from Memory [PC]

3- Decode the instruction. This reveals that it's a multiply instruction, and that the

operands are memory locations x, y, and product.

4- Fetch x and y from memory.

5- Multiply x and y, storing the result in a CPU register.

6- Save the result from the CPU to memory location product.

10.4.5 Addressing Modes

The term addressing modes refers to the way in which the operand of an instruction is

specified. Information contained in the instruction code is the value of the operand or the address

of the result/operand.

Figure (2): connection between memory and registers.

10.5 Our Simple Computer

SIMCOMP has a two byte-addressable memory with size of 128byte. The memory is synchronous

to the CPU, and the CPU can read or write a word (or cell) in single clock period.

The memory can only be accessed through the memory address register (MAR) and the memory

buffer register (MBR). To read from memory, you use:

- MBR <= Memory [MAR];

And to write to memory, you use:

- Memory [MA] <= MBR;

1. The CPU has three registers: an accumulator (AC), a program counter (PC) and an

instruction register (IR).

Page | 150

2. The SIMCOMP has only three instructions: Load, Store, and Add.

3. The size of all instructions is 16 bits; all the instructions are single address instructions and

access a word in memory.

Figure (3): Instruction format.

Instruction Format

The opcodes are:

Op-code Instruction Description

0011 Load M
Loads the contents of memory location M into the

accumulator.

1011 Store M
Stores the contents of the accumulator in memory

location M.

0111 Add M
Adds the contents of memory location M to the

contents of the accumulator.

Table 1

Prelab

1) You must write the basic code shown in Fig 1 at the last page of this experiment in your own

Quartus II file.

2) You have to trace the basic code manually so that you can understand what does the code do.

Use the following table:

Line # Code Description of what is done

6 reg [15:0] Memory [0:63]

7 reg [2:0] state

13 Memory [10] = 16’h3020

14 Memory [11] = 16’h7021

15 Memory [12] = 16’hB014

18 Memory [32] = 16’d7

19 Memory [32] = 16’d7

22 PC = 10; state = 0

Page | 151

29 MAR <= PC

30 state = 1

33 IR <= Memory [MAR]

34 PC <= PC + 1

35 state = 2

38 MAR <= IR [11:0]

39 state = 3

42 state = 4

43 case (IR [15:12])

44
load: MBR <= Memory

[MAR]

45 add: MBR <= Memory [MAR]

46 store: MBR <= AC

52 AC <= AC + MBR

56 AC <= MBR

60 Memory [MAR] <= MBR

 Table 2

3) You have to summarize the objective of Program #1 above, then repeat for Program #2

10.6 Accumulator Based Simple Computer

The Verilog program described by the following table is shown in Fig 1, study, and simulate the

code.

Instructions

Memory location Instruction assembly Instruction machine code in Hex

10 Load [32] 0011-0000-0010-0000b 16'h3020

11 Add [33] 0111-0000-0010-0001b 16'h7021h

12 Store [20] 1011-0000-0001-0100b 16'hB014h

Data

32 Data 7 Memory [32] 16'h7

33 Data 5 Memory [32] 16'd5

Page | 152

Table 3

Task1: Modify the code to include the jump instruction

Choose any opcode e.g., jump=4'b0001, you have to include the execution of jump which changes

the PC to the specified address in the instruction.

Instructions

Memory location Instruction assembly Instruction machine code in Hex

10 Load [32] 0011-0000-0010-0000b 16'h3020

11 Add [33] 0111-0000-0010-0001b 16'h7021h

12 Store [20] 1011-0000-0001-0100b 16'hB014h

13 Jump 11 0001-0000-0000-1011b 16'hB014h

Data

32 Data 7 Memory [32] 16'h7

33 Data 5 Memory [32] 16'd5

Table 4

Task 2: Write the General form of the instruction set for Prog #1

Task 3: Trace the Modified code as was done in the prelab but this time using the

waveforms

10.7 Register Based Simple Computer [SIMCOMP2]

Modify the instruction format so that SIMCOMP can handle four addressing modes and four

registers.

This new SIMCOMP2 has four 16-bit general purpose registers, R[0], R[1], R[2] and R[3] which

replace the AC. In Verilog, you declare R as a bank of registers much like we do Memory.

reg [15:0] R [0:3]; // declaration of registers bank

Since registers are usually on the CPU chip, we have no modeling limitations as we do with

Memory - with Memory we have to use the MAR and MBR registers to access the memory.

Page | 153

Therefore, in a load you could use R as follows:

R [IR [9:8]] <= MBR; //where the 2 bits in the IR specify which R register to set.

Task 4: Modify the four instructions of the old SIMCOMP

The new instruction should follow the new form:

1. LOAD R[i], M loads the contents of memory location M into R[i].

2. STORE R[i], M stores the contents of R[i] in memory location M.

3. ADD R[i], R [j], R[k] adds contents of R[j] and R[k] and places result inR[i].

To test your SIMCOMP2 design, perform the following program where:

1. PC starts at 10,

2. Suppose IR [9:8] is used to specify the register number.

3. In the “add instruction” IR [11:10] destination register, IR [9:8], IR [7:6] source1, source2

respectively.

Instructions

Memory

location
Instruction

Destination

register

Source

Register/Memory
Instruction set code in binary in Hex

10 Load R1 3 0011-0001-0000-0011b 16'h3103

11 Load R2 4 0011-0010-0000-0100b 16'h3204

12 Add R1 R1, R2 0111-0101-1000-0000b 16'h7580

13 Store R1 5 1011-0001-0000-0101b 16'hB105

Data

3 Data A Memory [3] 16'hA

4 Data 6 Memory [4] 16'd6

Table 5

Task 5: Write the General form of the instruction set for SIMCOMP2.

Task 6: Trace SIMCOMP2 code using the waveforms.

Task 7: Add immediate addressing to the SIMCOMP2:

If bit (IR [11]) is a one in a Load, the last eight bits are not an address but an operand. The operand

is in the range -128 to 127.

If immediate addressing is used in a LOAD, the operand is loaded into the register.

Page | 154

Load R1, 8

R1 ← 8

Simulate the following test with handwritten comments explaining what you are doing.

PC = 10

Memory [10]: Load R1,3 // Load immediate

Memory [11]: Load R2, -4 //Use 2's complement to represent (-4) Memory [12] Add R1, R1, R1

Memory [13]: Store R1,5

Instructions

Memory

location
Instruction

Destination

register

Source

Register/Memory
Instruction set code in binary in Hex

10
Load

Immediate
R1 3 0011-1001-0000-0011b 16'h3903

11
Load

Immediate
R2 -4 0011-1010-1111-1100b 16'h3AFC

12 Add R1 R1, R2 0111-0101-1000-0000b 16'h7580

13 Store R1 5 1011-0001-0000-0101b 16'hB105

Data

3 Data A Memory [3] 16'hA

4 Data 6 Memory [4] 16'd6

Table 6

Hint: How to read the 2's complement (8 bit) in Verilog:

MBR <= - (~ (IR [7:0]) + 1)

Task 8: Write the General form of the instruction set for Prog #2 with

immediate load

Page | 155

Figure (4): Basic code.

Page | 156

At the end of this experiment, you should have two files:

1- An Accumulator Based Simple Computer with 4 instructions as in program 1

2- A register based simple computer with 3 opcodes (noting that the load opcode can be immediate

or normal) as in program 2.

10.8 Post Lab

1. Modify Program #2 so that it finds the sum of three elements and then traces the process

(using waveform).

2. Modify the program in the first part of the post-lab to include the jump instruction with

opcode (jump=4'b1001) and change code to run this code below. (Write the instruction

format)

3. Modify the previous program making it sum 10 elements using a jump (loop) opcode to

sum the 10 elements.

Instructions

Memory

location
Instruction

Destination

register

Source

Register/Memory
Instruction set code in binary in Hex

10 Load R1 3

11 Load R2 4

12 Load R3 -9

13 Add R1 R1, R2, R3

14 Store R1 5

Table 7

Page | 157

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab

ENCS211

EXP. No. 11. - Arithmetic Elements

11.1 Objectives

❖ To understand functions and applications of the ALU (arithmetic logic unit).

❖ To perform arithmetic and logic operations using the74181ALU IC.

❖ To understand the construction and applications of parity generators.

❖ To generate parity bit using XOR gates and parity generator IC.

11.2 Equipment Required

❖ IT-3000 Basic Electricity Circuit Lab

❖ IT-3003 Module.

Page | 158

11.3 Theory

11.3.1 ARITHMATIC LOGIC UNIT (ALU) CIRCUIT

The logic diagram of the ALU is shown in Figure 1:

Figure (1): logic diagram of the ALU.

It consists of two major parts: the arithmetic unit and the logic unit. The output, either

arithmetic or logic which is selected by the selection switches. Figure 2 shows the pin

assignment:

Figure (2): pin assignment.

Page | 159

The circuit has two 4-bit inputs A and B, as well as a “carry-in” (Cn) input. There is a

mode control input (M) and 4 function-select lines S0, S1, S2, S3 forming logic or

arithmetic operations.

Also, it has a 4-bit output (F3~F0); a “carry-out” or “Cn+4” output. The biggest

advantage of the design is its ability to perform arithmetic functions such as addition,

subtraction. multiplication; and logic functions such as AND, XOR functions.

The mode control input (M) and function-select lines (S0~S3) determines which

function it will perform.

11.3.2 BIT PARITY GENERATOR CIRCUIT

A bit parity generated by the bit parity generator, usually accompanies the data

transmission process. The bit parity provides as a reference point and allows us to compare

and check whether the transmission process and the data transmitted are correct or not.

There are two types of bit parity generators: The “Odd” bit parity generator will

generate “1” if the data contains an even number of “1” s. For example, the data

“10111011” has six “1s”. When the bit parity is added to the end of this data, the number of

“1s” in the data will become an “ODD” number, hence the name “Odd Parity Generator”.

On the other hand, an “Even” bit parity generator will add a “1” to data with odd number of

“1s” to make the total number of “1s” even. If the data already has an even number of “1” s

no bit parity is generated. Output Y of the” Even” bit parity generator shown in Figure 3

will be 0 if the inputs ABCDEFGH is equal to 10111011.

Figure (3): “Even” Bit Parity Generator Circuit.

Page | 160

11.4 Procedure

11.4.1 ARITHMATIC LOGIC UNIT (ALU) CIRCUIT

A) Connect function-select lines S3~S0 to DIP2.7~2.4 respectively. Connect M toData Switch

SW0 to select arithmetic and logic operation. When M= “0” inputB3~B0 is displayed at output.

When M= “1” arithmetic and logic function isperformed.

Figure (4): “Even” Bit Parity Generator Circuit.

B) Connect inputs A3~A0 to DIP1.3~1.0 and B3~B0 to DIP2.3~2.0; Connect Cn to Data

Switch SW1; outputs F3~F0 to Logic Indicators L3~L0 and Cn+4 to L4.

C) Set M to “1” to perform the following arithmetic functions.

- Set Cn to “0” and ignore the previous carry.

When S3S2S1S0=0000 perform the addition.

What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

F3F2F1F0= ____________; Cn+4=____________

What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?

F3F2F1F0= ____________; Cn+4=____________

- Set Cn to “1” and add the previous carry.

When S3S2S1S0=0000 perform the addition.

What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

Page | 161

F3F2F1F0= ____________; Cn+4=____________

What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?

F3F2F1F0= ____________; Cn+4=____________

- Set Cn to “0”. When S3S2S1S0=0001 perform the subtraction.

What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

F3F2F1F0= ____________; Cn+4=____________

What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?

F3F2F1F0= ____________; Cn+4=____________

D) Again set M to “1” to perform the following arithmetic and logic functionsaccording to Table

1. Set inputs sequence A0~A3=A, B0~B3=B from DIP switches.

Table 1

11.4.2 BIT PARITY GENERATOR CIRCUIT

A) Bit Parity Generator Construct with XOR Gates (Module IT-3003 block Half-Adder).

1) Insert connection clip according to Fig.ure 5 to construct the even bit paritygenerator

circuit of Figure 6.

Page | 162

Figure (5): Bit Parity Generator Circuit.

Figure (6): “Even” Bit Parity Generator Circuit.

2) Connect inputs A, B, C, D, E to DIP Switches 1.0~1.4 and output F6 to Logic

Indicator L1. Follow the input sequences in Table 2 and record the outputs.

Page | 163

Table 2

B) Bit Parity Generator IC.

Figure (6): Bit Parity Generator IC.

1) U13 on block Bit Parity Generator of module IT-3003 is a bit parity generator Connect inputs

A1, B1, C1, D1, E1, F1, G1, H1 and I1 to DIP Switches 1.0~1.7andDIP 2.0 respectively.

Connect outputs Y0 to L0; Y1 to L1. Follow the input sequences given in Table .3 and record

the outputs.

Page | 164

Table 3

