DA ‘* 2\
o “M N
Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering

Department

Manual for
Digital Electronics and Computer

Organization Lab

ENCS 2110

August 2022

Table of Experiments

LABORATORY REGULATIONS AND SAFETY RULES......c.ccoceviiiieieciee, 1l
EXP. No. 1. Combinational LOgIC CIrCUILS..........ccceeiiieeiiie et 1
EXP. No. 2. Comparators, Adders, and Subtractorscccceevveeeiieeiciee e 21
EXP. No. 3. Encoders, Decoders, Multiplexers, and Demultiplexers 42
EXP. No. 4. Digital Circuits Implementation using Breadboard.................cccoecu..... 61
EXP. No. 5. Sequential LOgIC CIFCUILS..........ccivieiieiiic i 73
EXP. No. 6. Sequential Logic Circuits using Breadboard and IC’scceenee, 90
EXP. No. 7. Constructing Memory Circuits Using Flip—Flops.........cccccooeviviiinnnn, 97
EXP. No. 8. Introduction to QUARTUSII Software.............cccoevvveeeeeiiiiiveeeee e, 106
EXP. No. 9. A Simple Security System Using FPGAcccccviie i 134
EXP. No. 10. Simple Computer SIMUlation..........c.ccccovveviie i 145

EXP. NO. 11. - ArithmetiC BIEMENTScooveeeeeeeeeeee et 157

LABORATORY REGULATIONS AND SAFETY RULES

The following Regulations and Safety Rules must be observed in the laboratory:

1) Itis the duty of all concerned who use any electrical laboratory to take all reasonable steps to
safeguard the HEALTH and SAFETY of themselves and all other users and visitors.

2) Be sure that all equipment is properly working before using them for laboratory exercises.
Any defective equipment must be reported immediately to the Lab. Instructors or Lab.
Technical Staff.

3) Students are allowed to use only the equipment provided in the experiment manual or
equipment used for senior project laboratory.

4) Power supply terminals connected to any circuit are only energized with the presence of the
Instructor or Lab. Staff.

5) Students should keep a safe distance from the circuit breakers, electric circuits or any moving
parts during the experiment.

6) Awvoid any part of your body to be connected to the energized circuit and ground.

7) Switch off the equipment and disconnect the power supplies from the circuit before leaving
the laboratory.

8) Observe cleanliness and proper laboratory housekeeping of the equipment and other related
accessories.

9) Double check your circuit connections before switching “ON” the power supply.

10) Make sure that the last connection to be made in your circuit is the power supply and first
thing to be disconnected is also the power supply.

11) Equipment should not be removed, transferred to any location without permission from the
laboratory staff.

12) Software installation in any computer laboratory is not allowed without the permission from
the Laboratory Staff.

13) Computer games are strictly prohibited in the computer laboratory.

14) Students are not allowed to use any equipment without proper orientation and actual hands-on
equipment operation.

15) Smoking and drinking in the laboratory are not permitted

{-

9 o
" u) ‘Q
e
Birzeit UnlverSIty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 1. Combinational Logic Circuits

1.1 Objectives
%+ To become familiar with AND, OR, NOT, NAND, NOR , XOR operations and their
implementation.
% To construct NOT, AND, OR and XOR gates using NAND gates.
% To become familiar with concept of Truth table.
% To implement different Boolean function using NAND gate only.
% To learn techniques of solution of logic design problems.
% To become familiar with minimization techniques and with the use of Karnaugh maps.

% To construct AOI gate with basic gates.

1.2 Equipment Required
¢+ 1T-3000 Basic Electricity Circuit Lab
% 1T-3002 Basic Gates.

1.3 PrelLab

*» Review all gates and write the truth table for each of them.

Page | 1

1.4 Introduction

Logic gates are the digital circuits capable of performing a particular logic function

by operating on a number of binary inputs. Logic gates can be broadly classified as Basic

logic gates, Universal logic gates and other logic gates.

1.4.1 Basic logic gates:

Basic Logic Gates are the fundamental logic gates using which universal logic gates
and other logic gates are constructed. These gates are associative and commutative in nature.

AND, OR and NOT is the famous examples of basic logic gates.

1.4.1.1 AND GATE:
The AND gate performs a logical multiplication commonly known as AND function.
The output is high when both the inputs are high. The output is low level when any one of

the inputs is low. In Figure (1) shows all information for the AND gate.

Boolean

Logic Logic Truth A
expression

function symbol table

s | 2 _D— Y
!
ote 1 8 —

Figure (1): The function, symbol, truth table and Boolean expression for AND gate.

Y =AeB

2200 |>»
—o=0ol|m

—~o0o00o|<

1.4.1.2 OR GATE:
The OR gate performs a logical addition commonly known as OR function. The output
is high when any one of the inputs is high. The output is low level when both the inputs are

low. In Figure (2) shows all information for the OR gate.

Page | 2

| Logic Logic Truth Booleqn
function symbol table expression

2-input A
OR gate 5 Y

Figure (2): The function, symbol, truth table and Boolean expression for OR gate.

Y=A+B

—00|>»
_aao|

- 0O=0

1.4.1.3NOT GATE:
The NOT gate is called an inverter. The output is high when the input is low. The

output is low when the input is high. In Figure (3) shows all information for the NOT gate.

Logic Logic Truth Boolean
function symbol table expression

Inverter A ALY
(NOT gate) 4 4 3

Figure (3): The function, symbol, truth table and Boolean expression for NOT gate.

-0
—

-<

"
b

1.4.2 Universal logic gates

Universal logic gates are the logic gates that are capable of implementing any Boolean
function without requiring any other type of gate. We called this gate Universal gates because
Universal gates are not associative in nature, but they are commutative in nature. There are

two universal logic gates NAND gate and NOR gates.

1.4.2.1 NAND GATE:

The NAND gate is a contraction of AND-NOT. The output is high when both inputs
are low and any one of the inputs is low. The output is low level when both inputs are high.
In Figure (4) shows all information for the NAND gate.

Page | 3

] Logic Logic Truth Booleap
function symbol table expression
A BJ|Y
2-input A — 0 0 1
NAND Y 0o 1 1 Y = AeB
gate B —i 1 0|1
1 0

Figure (4): The function, symbol, truth table and Boolean expression for NAND gate.

1.4.2.2 NOR GATE:

The NOR gate is a contraction of OR-NOT. The output is high when both inputs are
low. The output is low when one or both inputs are high. In Figure (5) shows all information

for the NOR gate.

Logic Logic Truth Booleqn
function symbol table expression
A B|Y
i 0 0|1
2-input A
0 1 0 Y=A+B
NORgate | o :DO— L 1 ola
1 1 0

Figure (5): The function, symbol, truth table and Boolean expression for NOR gate.

1.4.3 Other logic gates

There are two remaining gates of the primary electronics logic gates: XOR, which

stands for Exclusive OR, and XNOR, which stands for Exclusive NOR.

1.4.3.1 EX-OR GATE:

The output is high when any one of the inputs is high. The output is low when both
the inputs are low, and both the inputs are high. In Figure (6) shows all information for the

EX-OR gate.

| Logic Logic Truth Boolean
function symbol table expression
A B|Y
Sinodt A 0O OO
-inpu 0 1 1 Y=A®B
e | B :>D_ Y 1ol ©
gate 1 11]0

Figure (6): The function, symbol, truth table and Boolean expression for X-OR gate.

Page | 4

1.4.2.2 EX-NOR GATE:
The X-NOR gate is a contraction of X-OR and NOT. The output is high when number

of ones even. The output is low when number of one is odd. In Figure (7) shows all

information for the X-NOR gate.

Logic Logic Truth Boolean
function symbol table expression
A B|Y
2-input A 0 0|1 =
EX-NOR Y 0o 1 0 Y=A®B
gate B 1 0 0
1 1 1

Figure (7): The function, symbol, truth table and Boolean expression for X-NOR gate.

Page | 5

1.5 Procedure
In this experiment we will use NAND and NOR gate to build another gate.
1.5.1 The characteristic of NOR gate.

1. Set module IT-3002 and locate block NOR gate as shown in Figure (8). Connect
+5V of module 1T-3002 To the +5V output of fixed power supply.

Figure (8): 1T-3002 NOR Gate Block.

2. Then use first gate U6 in Figure (8). Connect A and B in block a with Data switch
SWO0 and SW1 TTL level in power supply and connect output F1 with Logic
Indicator LO. Then write the result in Table (1).

SWO0 SWi1i F1

0

1

0

k| k| O O

1

Table 1

Page | 6

3. In this part connect inputs A, B to Data Switches SW0, SW1 and output F1 to
Logic Indicator L1. Set SWO0 to “0” and SW1 to “0”, see the result of the output

F1 then change SW1 to “1”, and see the output to make it clear go to table 2 and

fill the result.
SWO0 SW1 F1
0 0
0 1

Table 2

= According to the table does the circuit act as a NOT gate.

» Find another way to build NOT gate using one NOR gate and draw the circuit
in box below. (Hint: return to Figure (5) and see the truth table of NOR gate

find when the output is opposite of input).

J

4. Use two of U6 to construct a buffer shown on Figure (9). Insert connection clips
between A and B, connect F1with Aland connect A1 with B1. Connect input A to
SWO and output F3 to L1. fill the table 3.

F3

Figure (9): build buffer using NOR gate

Page | 7

SWO0

F1

e this circuit act as

5. We know that OR gate is inverse of NOR gate that mean we can build OR
gate using (NOR and NOT) gates and we learn how to build NOT gate using
NOR gate only. Draw the following circuit using NOR gate only.

Table 3

4 A

B

_

e P

~

J

Use two of U6 to construct an OR gate. Insert connection clips between F1-Al and A1-Bl.

Connect inputs A to SWO0, B to SW1,; and output F3 to L1. Follow the input sequences

shown below and record the output states in Table 4.

sEDUIDE

Figure (10): build OR using NOR gate.

SWO0

SWi1i

F3

0

1

0

| = O] O

1

Page | 8

Table 4

6. Know we need to build AND gate using NOR gate only to learn how to construct
it, let's solve the following equation. We know that AND gate equation is F=A.B
if we take inverse for this equation then use De morgan low the equation become

From above equation (F ") we can see that we can build AND gate using one NOR gate
and two NOT gate. Insert connection clips according to the Figure (11) below. The circuit
will act as an AND gate. Connect A to SWO; D to SW1; F1to Al; F2 to B1; F3to L1.

Follow the input sequences given below, record the output states in Table 5.

Figure (11): build AND gate using NOR gate using Kits.

SWO0 SW1 F3

0

1

0

| k| O] O

1

Table 5

Page | 9

1.5.2 The characteristic of NAND gate.

1. Set module IT-3002 and locate block NAND gate as shown in Figure (12). Connect +5V of
module 1T-3002 To the +5V output of fixed power supply.

Figure (12): 1T-3002 NAND Gate Block.

2. Then use first gate U4 in Figure (12). Connect A and Al in block a with Data switch SWO and
SW1 TTL level in power supply and connect output F2 with Logic Indicator LO. Then write
the result in Table (6).

SWO SW1 F1

0

0

0
0 1
1
1

1

Table 6

3. Inthis part connect inputs A, Al to Data Switches SWO0, SW1 and output F2 to Logic
Indicator L1. Set SWO to “1” and SW1 to “0”, see the result of the output F1 then change
SWI to “1”, and see the output to make it clear go to table 7 and fill the result in table.

Page | 10

SWO0 SW1 F1
1 0
1 1
Table 7

« According to the table does the circuit act as a NOT gate?

o Find another way to build NOT gate using one NAND gate and draw the circuit in box
below. (Hint: return to Figure (4) and see the truth table of NAND gate find when the
output is opposite of input).

_

~N

J

4. Use two U4 to construct a buffer shown on Figure (13). Insert connection clips between A and
Al, connect F2 with A2 and connect A2 with B2. Connect input A to SWO0 and output F4 to

L1. fill the table 8.

1T S

Page | 11

Figure (13): build buffer using NAND gate

SWO0

F1

e this circuit act as ---

5. We know that AND gate is inverse of NAND gate that mean we can build AND

Table 8

gate using (NAND and NOT) gates and we learn how to build NOT gate using NAND
gate only. Draw the following circuit using NAND gate only.

_

g s >

~

J

Use two U4 to construct an AND gate. Insert connection clips between F2-A2 and A2-

B2. Connect inputs A to SWO0, Al to SW1,; and output F4 to L1. Follow the input
sequences shown below and record the output states in Table 9.

A

0,0

F1

R
13

0,0,

U4

D Ol

Figure (14): build AND using NAND gate.

Page | 12

SWO0 SW1 F3
0 0
0 1
1 0
1 1
Table 9

6. Know we need to build OR gate using NAND gate only to learn how to construct it, let's

solve the following equation. We know that OR gate equation is F=A+B if we take inverse

for this equation then use De morgan low the equation become

From above equation (F*") we can see that we can build OR gate using one NAND gate
and two NOT gate we put it in input as show in Figure (15). The circuit will act as an OR
gate. Connect A to SWO0; D to SW1; F1 to Al; connect A with Al; and D with B1 and F2
to A2; F3 to B2 then connect the output F4 with L1 .Follow the input sequences given

below, record the output states in Table 10.

A
F1
A2

A1 -

B1
C F3 B2

U4

D

Figure (15): build OR gate using NAND gate using Kits.

Page | 13

SWO0 SW1 F3

0

1

0

| k| O] O

1

Table 10

1.5.3 XOR Gate Circuit.

know we went to build XOR gate using NAND gate we know that XOR equation is
F=AB +A B we can build it using basic gates as shown in Figure 16-a . or we can build it

using NAND gates only as shown in Figure 16-b.

|
1

Ao
J 1
oF E—H:: T or
m

B c»i———{
Figure (16-a): Constructed with basic gates. ’ Fig.ur-e (-1'6-‘b5:"éonstructed with NAND gates.

Page | 14

1.5.3.1 Constructing XOR gate with NAND gate (Module 1T-3002 block
NAND gates)

Insert connection clips according to Figure 17. (a) to construct the circuit of Figure 17.

Connect inputs A to SW1, D to SW2; outputs F1 to L1, F2 to L2; F3 to L3 and F4 to L4.
record the output in Table 11.

B
" @ u4
= F2 A3
- Fd
B1
C F3 B2
U4
D !
Figure (17): Constructed with NAND gates.
SW1 SW2 F1 F2 F3 F4

| = Ol O
| O] | O

Table 11

-Now determine the Boolean expression for F1, F2, F3 and F4.

Page | 15

- Since F=A'B+AB', when B=0, then F=...........................ooo.. and the circuit act as

.......... WhenB=1,F=.................cccoeeeooiii., the circuit actas an
In other words, the input state of an XOR gate determines whether it will act as a
............... Or In this experiment now let test this status using Kits KL-33002.

dos the output same to the result above?

1.5.3.2 Constructing XOR gate with Basic Gate (Module 1T-3002 block
Comparatorl)

Insert connection clips according to Figure 18-a.

o to construct the equivalent circuit of Figure 18-b.
A

O

A1l

F6

u2
F7
u2

U1
1

)F:l' F3 U2 F4
U1 H >—|>‘-<)
ﬁ
ES

C B1 U

Figure (18-a): Constructed with basic gates using kits.

Figure (18-b): equivalent circuit.

o Connect inputs A, B to SW1, SW2; outputs F1, F2, F3to L1, L2, L3 as shown in Figure
18-a. write the result in Table 12.

Page | 16

SW1 SW2 F1 F2 F3

k| k| O O
| O k| O

Table 12

1.5.4 AOI Gate Circuits.

AND-OR-INVERTER (AOI) gates consist of two AND gates, one OR gate and one
INVERTER (NOT) gate. The symbol of an AOI gate is shown in Fig. 1.15. The Boolean
expression for the output F is F = (AB+CD)' (1)

A O—
B O—

C O0—

D 0—

Figure (19): AOI gate.
By De Morgan's theorem, Eq. (1) can be converted to:
F=(A+B") (C+D))

Eq. (1) is also referred to as "Sum of Products".

Eq. (2) is also referred to as "Product of Sums".

Basically, the A-Q-I gate is a "Sum of Products" logic combination

o Use Ul and U2 on block Comparator 1 of module IT-3002, shown in Fig. 1.20 (a), to
construct the A-O-1 gate of Fig. 1.20 (b). Fig. 1.20 (c) is the equivalent A-O-I circuit.

Page | 17

Figure (20-a): AOI circuit Wiring diagram

A F1

F4

B1 F3
B F2

Figure (20-b): AOI circuit Actual circuit

A1
F4
B1 F3

Figure (20-c): AOI circuit Equivalent circuit
o Connect inputs A, Al, B, B1 to Date Switches SW0, SW1, SW2 and SW3 respectively.

Connect outputs F3, F4 to Logic Indicators L1 and L2.
o Set BxB1to “0”, follow the input sequences for A, Al in Table 13 and record the outputs

Page | 18

Al

F3

F4

Rl k| O o >

| O | O

- Does F3 act as an AND gate between A and A1?
o WhenBxB1 is “0”, does F3 act as an AND gate between A and A1? (F3=AxAL).

Table 12

o WhenAlxA is “0”, follow the input sequences for B, B1 in Table 14 and record the

Outputs.

Bl

F3

F4

R = O O W

| O k| O

- Does F3 act as an AND gate between B and B1?

o WhenAxAl is “0”, does F3 act as an AND gate between B and B1? Does F3 equal

toAxA1+BxB1?

Page | 19

Table 13

1.6

Post Lab

Draw the logic diagram showing the implementation of the following Boolean equation
using “NAND” gates

a) F=AB (CA).

b) F=(D.A) + (C.B)

C)F=XZ+YZ+XYZ

Draw the logic diagram of the following Boolean equations using NOR gates.
a) F=(A+B) (CD+A)
b) F= (ABC+D) C

¢) F = (X+2) (Y'+Z) (X' +Y+2Z)

Implement the OR operation using AND, NOT gate. Draw the logic diagram and write
Boolean equation.

Implement the AND gate using OR, NOT gate. Draw the logic diagram and write
Boolean equation.

Prove that the equality operation F1 =AB+A’B’ is the inverse of exclusive OR operation

F2=AB’+A’B (use Demerger’s theorem).
Show how is it possible to reduce Boolean expressions by means of Karnaugh map

a)F1=A’B’C+ ABC’ + A’BC’ + AB’C
b) F2=A’D+A’C+BD+AB’D’
c) F3= A'BCD + ABCD' + A'BCD' + ABCD'

d) F4= A'B'C'D'+ AB'CD' + AB'CD' + ABC'D'

Page | 20

{-

9 o
' u) ‘P
e
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 2. Comparators, Adders, and Subtractors

2.1 Objectives

¢+ To understand the construction and operating principle of digital comparators
¢+ To construct comparators with basic gates and ICs

¢+ To implement half- and full adders using basic logic gates and ICs

%+ To implement a 4-bit adder unit(s)/ICs to add 4-bit numbers

+¢+ To understand the theory of complements

«* To construct half- and full- subtractor circuits

2.2 Equipment Required
++ 1T-3000 Basic Electricity Circuit Lab
s IT-3002 Basic Gates Circuit
¢ IT-3003 Adder/Subtractor Circuits

2.3 PrelLab

1) Prepare all sections and work out all the required designs.
2) Build half adder using basic gates.
3) Build the above circuit using universal gates.
4) Build a full adder using basic gates.
5) Build a full adder using half adder and another gate.
6) Build a 4-bit adder using a full adder.
7) Build a 4-bit subtractor using basic gates.
Page | 21

2.4 Theory

2.4.1 Half- and Full- Adder Circuits:

2.4.1.1 Half Adder:

The half adder accepts two binary digits on its inputs and produces two binary digits
outputs, a sum bit, and a carry bit. The half adder is an example of a simple, functional digital
circuit built from two logic gates. The half adder adds to one-bit binary numbers (AB). The

output is the sum of the two bits (S) and the carry (C)as shown in Figure 1.

Half-
Adder

B —> e Canry'C’

Figure (1): Half-Adder Functional Diagram.

Note how the same two inputs are directed to two different gates. The inputs to the XOR
gate are also the inputs to the AND gate. The input "wires" to the XOR gate are tied to the
input wires of the AND gate; thus, when voltage is applied to the A input of the XOR gate, the

A input to the AND gate receives the same voltage. As shown in Figure 2.

. OR S | A B Sum | Carry-Out |
B 0 0 0 0
0 1 1 0
AND C : : - =
1 1 0 1

Figure (2): Half-Adder circuit and truth table.

Page | 22

2.4.1.2 Full Adder:

The full adder accepts two inputs bits and an input carry and generates a sum output and
an output carry. The full-adder circuit adds three one-bit binary numbers (Cin, A, B) and
outputs two one-bit binary numbers, a sum (S) and a carry (Cout) as shown in Figure 3. The

full adder is usually a component in a cascade of adders, which add 8, 16, 32, etc. binary
numbers.

A
' - Sum
B | Full Adder
Carry In Carry Out

Figure (3): Full-Adder Functional Diagram.

In Figure 4-3a, if you look closely, you'll see the full adder is simply two half adders
joined by an OR. We can implement a full adder circuit with the help of two half adder
circuits. The first half adder will be used to add A and B to produce a partial Sum. The second
half adder logic can be used to add CIN to the Sum produced by the first half adder to get the
final S output. If any of the half-adder logic produces a carry, there will be an output carry.

Thus, COUT will be an OR function of the half-adder Carry outputs. We can see the truth table
for full adder in Figure 4-b.

B8 — gt]) xo= S
Cin = e :
HUL Half-Adder 2

C

Half-Adder 1

Figure(4-a): Full-Adder Circuit.

Page | 23

A B Carry-In { Sum Carry-Out |

0 o | o | o o
) 0 1 1 0
o 1 0 1 0

0 1 1 0 1
| 1 0 0 1 0
1 0 1| 0 1
1 1 0 0 1

1 1 1 1 1

Figure(4-b): Full-Adder Truth table.

To perform additions of numbers greater than 2-bits in length, the connection shown in
Figure 5, or "Parallel Input" should be used to generate sums simultaneously. However, the
sum of the next adder will be stable only after the previous adder's carry has stabilized. For

example, in Figure 5, the sum of FA2 will not be stable unless the carry of FA 1 is stable.
B4 A4 B3 A3 B2 A2 B1 A1

L& LB il J,AL,’
C4 ——{ FA4 |- FA3 FA2 |- FA1 |~—CO
|

I C3 L-]*~— C2 l Cc1

S4 $3 82 $1

Figure (5): 4-bit adder.

When FAL adds Al and B1, a sum S1 and a carry C1 is generated. C1 will be added to
A2 and B2 by FA2, generating another sum S2 and another carry C2. In the case of Figure 5,
the sum of the four adders do not stabilize at the same time, delaying the adding process. This
delay can be eliminated by using the "Look-Ahead" adder.

Look-ahead adders do not have to wait for the previous adder to stabilize before performing
the next addition, saving valuable time. In Boolean expression we assume:

Pi =Ai @BI

Gi =Ai x Bi

The output and carry can be expressed as:

Si=Pi® Cj

Ci+1 =Gi + PiCi

Page | 24

Gi is called "Carry Generate". When Ai and Bi are both "1", Gi is "1" and unrelated to the
carry input. Pi is called "Carry Transmit", related to the carry transmit between Ci and Ci+1. If
we substitute the carry function of each stage by the previous carry, we get:

C2=Gl+PicC1

C3=G2+P2C2=G2+P2G1+P2P1C1

C4=G3+P3C3=G3+P3P2G1+P3P2P1C1

Figure 6 shows the carry path of a look-ahead adder. The 74182 is a look-ahead adder

TTL-IC.
= w;wf'..".j“. }; ca
p3__ | ||| _@r
G3 1 | —
g D}.‘ P
TN
G |
O i e LN 15
c1 AR ¥ sl

Figure (6): look-ahead adder.

Binary adders can be converted into BCD adders. Since BCD has 4 bits with the
largest number being 9; and the largest 4-bit binary number is equivalent to 15, there is a
difference of 6 between the binary and the BCD adder: Under following conditions 6 must be
added when binary adders are used to add BCD codes:

1. When there is any carry.

2. When the sum is larger than 9.

If the order of priority is S8, S4, S2, S1 and the sum is larger than 9 then S8 x S4 + S8u x S2. If
any carry is involved, assuming the carry is CY, under this term, 6 must be added:
CY +S8 X S4 + S8 X S2.

Page | 25

Addend Augent

W EOE
CYlgap3m2zB1Aa4A3A2A1| CO
- ; '.-- — Previous Carry
[S8545281 |
Cn y | i — B & Al
Final carry o { < — "*{”i—r, ‘*i ||
: o an
—CI— |
{ | |
=1 |||
lA,llﬁl, 1O o T

‘BaB3B2B1A4 A3A2A1E:o
‘ .
{ 4-bit ADDER |

58‘ sat 52‘ $1L
Final Sum

Figure (7): BCD adder.

2.4.2 Half- and Full-Subtractor Circuits:

2.4.2.1 Half Subtractor:
Binary subtraction is usually performed by using 2’s complement. Two steps are

required to obtain 2’s complement. First, the subtrahend is inverted to 1’s complement, i.e., a
“1”toa“0” and a “0” to a “1”. Secondly, a “1” is added to the least significant bit of the
subtrahend in 1’s complement.

A half-subtractor performs the task if subtraction 1-bit at a time regardless of whether
the minuend is greater or less than the subtrahend. “Borrow” from previous subtraction is not

taken into consideration

Minuend | Subtrahend | Difference = Borrow | AO
A | B | DF . BwW DF
0 0 0 0 B
0 ' 1 ' | | 1 |
1 o0 10
1 1 0 0
(a) Truth table. (b): Half-Subtractor circuit.

Figure (8): Half-Subtractor.

Page | 26

BW

2.4.2.2 Full Subtractor:

full subtractor is a combinational circuit that performs subtraction of two bits, one is

minuend and other is subtrahend, taking into account borrow of the previous adjacent lower
minuend bit. This circuit has three inputs and two outputs. The three inputs A, B and Bin,
denote the minuend, subtrahend, and previous borrow, respectively. The two outputs, D and
Bout represent the difference and output borrow, respectively. Although subtraction is usually
achieved by adding the complement of subtrahend to the minuend, it is of academic interest to
work out the Truth Table and logic realization of a full subtractor; x is the minuend; y is the
subtrahend; z is the input borrow; D is the difference; and B denotes the output borrow. The

corresponding maps for logic functions for outputs of the full subtractor namely difference and

borrow.
A B C DF BW T\

0 0 0 0 0 | !

0 0 1 1 1 A

0 1 0 1 1 BW
0 I I 0 i o :)D— —{>0—

1 0 0 1 0 B =

1 0 1 0 0 ;

1 1 0 0 0 c)) >__DF
1 1 1 1 1 o ’

(a) Truth table. (b): Full-Subtractor circuit.

Figure (9): Full-Subtractor.

From a 4-bit adder circuit, we can assemble subtractor circuits of 4-bit or longer. Figure
10 shows a dual-purpose adder/ subtractor circuit. When Bn-1= “0” additions are performed
and all XOR gates act as buffers. When Bn — 1 = “1” subtractions will be performed and all
XOR gates act as NOT gates. Y inputs use 1’s complemented and adds a “1” from Cin. The
outputs are Cn (carry) and Bn (borrow), Cn and Bn are dependent on Bn-1.

Page | 27

(MSB) (LSB)
Y3 Y2 i YO

(MSB) (LSB)
X3 X2 X1 X0

LLLL

A4 A3 A2 A1 B4 B3 B2 B1
F1 Y4

OA ICout u9 Cin 12 O

24 =3 F2 31

00 0

15 2 6 9

Figure (10): Dual-purpose adder/subtractor circuit.

2.4.3 Comparator Circuit

At least two numbers are required to perform any comparison. The simplest form of the
comparator has two inputs. If the two inputs are called A and B, then there are three possible
outputs: A>B, A=B, and A<B. Figure 11 shows the schematic and symbol diagrams of a

simple 1-bit comparator circuit.

e DO—D_OM T
e o

(a) Logic diagram. (b): Circuit symbol.

Figure (11): Comparator circuit.

In actual applications, 4-bit comparators are used most often. In a 4-bit comparator, each
bit represents 2°, 21, 22, and 23. Comparison will start from the most significant bit (2%), if input
A is greater than input B at the 23 bits, the “A>B” output will be in the high state. If A and B
are equal at the 22 bits, the comparison will be carried out at the next highest bit (22). If there is
still no result at this bit, the process is repeated again at the next bit. At the lowest bit (2°), if
the inputs are still equal then the “A=B” output will be in the high state. Figure 12 shows the

schematic and symbol of a 4-bit comparator.

Page | 28

B3 AZ

B2 AZ

AI>B3 A3=B3 A3I<B3

AX>B2 AZ=BZ AI<B2

A1>B1 Al=B1 Ai1<Bi

A0>BO0 AD=BO AO0<BO

Page | 29

(a): A 4-bit comparator constructed with four 1-bit comparators.

A3 AZ A1 AD

4-bit

—h}B
_A=B

_h{B

B3 B2 B1 BO

(b): Symbol of a 4-bit comparator

Figure (12): Expansion of 1-bit comparators to construct 4-bit comparator.

2.5 Procedure

2.5.1 Comparator Circuits

2.5.1.1 Constructing Comparator with Basic Logic Gates

1. Set module IT-3002 block Comparator 1.Insert connection clips according to Figure
13 (a). U1, U2, and U3 will be used to construct the 1-bit comparator shown in Fig.

13 (b).
~ A O——g——i
O
A1 _Do_ U1 F1 (A>B)
F6 U2
7 ’ ~Ou1:7400 ve
- U2:7416 ._@—o F5 (A=B)
B U3:7486 g
CB> U2
o D—o F2 (A<B)
B
(a) Wiring diagram (IT-3002 Comparator 1 block) (b) Logic diagram

Figure (13): 1-bit comparator.

2. The inputs are triggered by high state voltage. Connect inputs A and B to Data
Switches SW1 and SW2. The outputs are triggered by low state voltage. Connect
outputs F1, F2, F5 to Logic Indicators L1, L2, and L3 respectively. Then Follow the

input sequences the result in Table (1).

INPUTS OUTPUTS
SW2 SW1 F1 F2 F5
0 0 A=B
0 1 A>B
1 0 A<B
1 1 A=B
Table 1

Page | 30

2.5.1.2 Constructing Comparator with TTL IC

1. Block (Comparator 2) of module IT-3002 will be used in this section. U5 is a
74L.S85 4-bit Comparator IC shown in Figure 14.

ARE

A>B 4 A3 A2 A1 A0 |5 A>B
O— —0
AsB 4 ¢ A=B
O— -0
A<B ; A<B
o—= ——0

B3 B2

B1 B0
1 14l 11J) 51
Figure (14): 4-bit Comparator IC (IT-3002 block Comparator 2).

2. Connect input in left side of the blook A<B to SW1, A=B to SW2, A>B to SW3.
The inputs AO~A3 and B0~B3 of the 74L.S85 are also connected to the BCD rotary
switch and connect output in right side of the blook A<B, A=B and A>Bto Leds.

3. Set comparing inputs AO~A3=As, B0O~B3=Bs, and As=Bs from the rotary switch,
follow cascading inputs sequences in Table 2 and record the outputs.

INPUTS OUTPUTS
A>B A=B A<B A>B A=B A<B
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1
Table 2

Compare the results with the function table of 74LS85 (page 2 of the datasheet)®.

1 https://www.futurlec.com/74LS/74LS85.shtml
Page | 31

https://www.futurlec.com/74LS/74LS85.shtml

4. Set SW3to “0”; SW2 to “1”; SW1 to “0”. Observe and record the outputs under the
following conditions:
a) As>Bs

b) As=Bs
c) As<Bs

Design a three-bit comparator (using the basic comparator) and hand it out to your
TA. (Pre Lab).

2.5.2 Half- and Full-Adder Circuits

2.5.2.1 Half Adder

Hand out, Design, Boolean function, and truth table of half- and full-adder to your TA.

(Pre Lab).

1. Set module IT-3003 and locate block Half-Adder. Insert connection clips according to
Figure 15 (a), using U5 and U6 to assemble the half-adder circuit of Figure 15 (b).
Connect +5V of module 1T-3003 to the +5V output of the fixed power supply.

ua FO

(a) Wiring diagram (IT-3003 Half-Adder block) (b) Half-Adder circuit

Figure (15): Half -Adder.

2. Connect inputs A, B to Date Switches SW0, SW1 and connect outputs F1, F2 to logic
indicators L1 and L2. Follow the input sequences for A and B in Table 3 and record
the output states.

Page | 32

INPUTS OUTPUTS
SW1 (B) SWO (A) F1 (CARRY) F2 (SUM)
0 0
1 0
1 1
Table 3

3. Reassemble the circuit according to Figure 16 (a) to construct the full-adder circuit shown in Figure
16 (b).

4. Connect A, B, C to SW1. SW2 and SW3. A and B are augends while C is the previous
carry. Connect F3to L1, F5 to L2. Follow the input sequences in Table 4 and record

output states
u4 FO

AO

O A3

u7 F3

5t

g) us
us F5
€ co) iH——
(a) Wiring diagram (1T-3003 Full-Adder block) (b) Full-Adder circuit

Figure (16): Full adder

Page | 33

INPUTS OUTPUTS
SW3 (C) SW2 (B) SW1 (A) F3 (CARRY) F5 (SUM)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 4

2.5.2.2 Constructing 4-Bit Full-Adder with IC

1.

U9 on block Full-Adder of module 1T-3003 is used as a 4-bit adder. Connect input
Y5 to SWO, so the XOR gates U8, which are connected to YO~Y3, will act as
buffers.
Connect input X0~X3 (addends), YO~Y3 (augends) to DIP switches DIP2.0~2.3
and DIP1.0~1.3 respectively as shown in Figure 17. Connect F1, X1, 2, £3, ¥4 to
L1~L5. Follow input sequences in Table 5 and set SWO0 to “0”; record F1 and X in
binary numbers.
X = X3X2X1X0
Y =Y3Y2Y1YO0
X =23%2¥1%20

U 7aLSES M3E)

U11:74LS08
U10:74LS32

(MSB) (LSB)
X3 X2 X1 X0

TLLL

A4 A3 A2 A1 B4 B3 B2 B1
F1 Y4
14 Cout u9 Cin 13 O
34 33 32 31
15 |2 |6 |9

Figure (17): Wiring Diagram (1T-3003 4-bit Full-Adder block).

Page | 34

INPUTS OUTPUTS
Y3 Y2 Y1 YO0 X3 X2 X1 X0 | X4 X3 X2 pM | F1(CARRY)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 1 1
0 0 0 1 0 1 1 0
0 0 0 1 1 0 0 0
0 0 1 1 0 1 1 0
0 1 0 0 1 0 0 0
0 1 0 0 1 1 1 1
1 0 0 0 0 1 1 1
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 1
Table 5

2.5.2.3 High-Speed Adder Carry Generator Circuit
1. U3 (74182) on block High-Speed Adder of module IT-3003 is used to construct a carry
generator circuit shown in Figure 18.

Cnnﬂ—o
1 Cnaxpl2
i Ui G1
B1 2 cn+vhid
P1 n+yp—-=_)
U3
1 9
A2 U1 G2 Cn+zp=—uoA(D
B2 15
P2
chll—0
C U1 2dc3 7
= Pp—O
B3
£dp3

U1: FaLs00
U2: TALS268

Ud: TeL5162

Figure (18): Carry generator circuit.

Page | 35

2. Connect inputs AO~A3 (addends) to DIP Switches 1.0~1.3; BO~B3 (augends) to
DIP2.0~2.3, connect Cn to SWO0, and set SWO to “0”. Follow the input sequences

in Table 6 and record output states.

INPUTS OUTPUTS
B3 B2 Bl BO A3 A2 Al A0 | Cn+x |Cn+y |Cn+z
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 0 0
1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1
0 1 1 1 0 1 1 0
1 0 0 1 0 1 0 1
Table 6

- Compare the results with the truth table of 74LS182 (datasheet).

Page | 36

2.5.2.4 2.5.2.4 Constructing BCD Adder

1. The circuit shown in Figure 19 will act as a BCD adder.

U9,U12:74LS83 (MSB) (LSB)
UB:74LS86

U11:74LS08 Y3 Y2 Y1 YO0
U10:74L832

(MSB) (LSB)
X3 X2 X1 X0

1 3 18 110
A4 A3 A2 A1 B4 B3 B2 B1

O—¢Ycout U9 cin P24-O

4- I1 3 |8 I10 16 14 |7 11
A4 A3 A2 A1 B4 B3 B2 B1

O—cout u12 Cin &_L
34 33 32 31
J;s(t £ J;
F7 F6 F5 F4

(MSB) (LSB)

Figure (19): Wiring Diagram (IT-3003 BCD Adder).

2. Connect inputs X0~X3 to DIP 1.0~1.3; YO~Y3 to DIP 2.0~2.3; Y5 to “0”.

U9 and U12 are 74L.S83 look-ahead 4-bit BCD adders, connect outputs F8~F11 to
the inputs of the 7-Segment display SEG-1. Connect F1, F2 to Logic Indicators L4
and L5.

Connect outputs F4~F7 of U12 to another 7-Segment display SEG-3 and F3 to L10.

3. F8~F11 are the sum of X0~X3 added to YO~Y3 while F1 is the carry. Follow the
input sequences for X0~X3 and YO~Y3 in Table 7 and record the output states.

Page | 37

INPUTS OUTPUTS (U9) CAST (U12)
X3 X2 | X1 XO0]Y3|Y2 |Y1|]YO|F1l [F11 [F10 [FO |F8 |[F2 [F3 |[F7 |F6 |F5 |F4
0 0 0 01 010 0 0

0 0 0 1170710 1 1

0 0 1 110 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 1 0 0 0

0 0 1 1 0 1 1 0

0 1 0 01 010 1 0

0 1 0 0]l O 1 0 1

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1]0 0 0

0 1 1 1 1 0 0 1

1 0 0 01l 110 0 1

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 1

1 0 1 0 1 1 0 0

1 0 1 1 1 1 1 0

1 1 1 1 1 1 1 1

Table 7

2.5.3 Half- and Full Subtractor Circuits

2.5.3.1 Constructing Half-/Full Subtractors with basic logic Gates.

Hand out, Design, Boolean function, and truth table of half- and full-adder to your TA.

(Pre Lab).

1. Set module IT-3003 and locate block Half-Adder. Insert connection clips according

to Figure 20.

2. Connect inputs A~C to Data Switches SW0~SW2; Outputs F2 to Logic Indicator
L1; F1to L2; F3to L3; and F5 to L4. When C=0 the circuit is a half-subtractor. F1
is the borrow output; F2 is the difference and F5=F2; F4=0; F3=F1. When C=1 the
circuit is a full-subtractor. F3 is the borrow output and F5 is the difference output.

Page | 38

u4g FO

A1
F1

U6 F3
A
o159
K ,_EZ) = Fa

)

| us}=—0
s F5
© 10

0.0 O—
E) Us F6
O
E

Figure (20): Wiring diagram (Half-subtractor).

3. Follow the input sequences in Table 8 and record output states.

INPUTS OUTPUTS

C A B F1 F2 F3 F5
Half- 0 0 !
subtractor 0 0 0
Half-adder 0 1 1
0 1 0
Full- ! 0 0
subtractor 1 0 1
Full-adder 1 1 0
1 1 1

Table 8

2.5.3.2 Constructing 4-Bit Full-Subtractor with IC

1. Use Module IT-3003 block Full Adder (Figure 21). Connect inputs X3~X0
(minuend) to DIP Switch 1.3~1.0; Y3~YO0 (subtrahend) to DIP 2.3~2.0; Y5 to
SWO.

Connect outputs F1 to L4; F11~F8 to L3~L0. To execute the subtract operation,

Page | 39

set SWO to “1” (or Cin of U9=1). Follow the input sequences below and record
the output states in Table 9.

U9,U12:74LS83 (MSB) (LSB)
Ut1.74L808 Y3 Y2 Y1 Yo
U10:74LS32 O O O O Y5
(MSB) (LSB) b
X3 x2 x1 xo0 (us) (us) |us |us
(ﬁ i i (rm 16 |4 |7z |11
A4 A3 A2 A1 B4 B3 B2 B1
F1 .4 13 | X4
Cout us cin —-QO
34 33 32 31

15 |2 6 9

Figure (21): Wiring Diagram for full subtractor (IT-3003 4-bit Full-Adder block)

INPUTS OUTPUTS
X3 X2 X1 X0 Y3 Y2 Y1 YO F1 | F11 | F10 | F9 F8
0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1
1 0 0 1 1 0 0 0
1 0 0 1 0 1 1 1
1 0 1 0 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 1 0 1 0
1 1 1 1 1 0 1 0
Table 9

Page | 40

2.5 PostLab
1. Design 8-bit BCD adder-subtractor.

2. Design 8-bit comparator using 2 of 4-bit comparator.

3.A 4-inputs, 3-outputs circuit that compares 2-bit unsigned numbers and outputs a ‘1’ on
one of three output lines according to whether the first number is greater than, equal to, or

less than the other number. You can only use two 4x1 multiplexers.

Page | 41

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 3. Encoders, Decoders, Multiplexers, and Demultiplexers

3.1 Objectives
% To understand the operating principles of Encoders/Decoders
% To understand the operating principles of Multiplexers/Demultiplexers
¢+ To construct Encoders and Decoders using basic gates and ICs
++ To construct Multiplexers and Demultiplexers using basic gates and 1Cs

3.2 Equipment Required
++ IT-3000 Basic Electricity Circuit Lab
% 1T-3004 Encoder/Decoder Circuits
% 1T-3005 Multiplexer/Demultiplexer Circuits

3.3 PrelLab

1) Using proteus build the following circuit and show why you use the components:
a) Build 1x2 Decoder basic gates.
b) Build the above circuit using universal gates.
¢) Build a 2x1 Encoder using basic gates.
d) Build an 8x1 Multiplexer using basic gates.
e) Build a 1x8 Demultiplexer using basic gates.
f) Write truth table for all above circuits.

Page | 42

2) Design a circuit which uses an SN74151 to implement a sum-of-products expression, as
follows:

a) Convert the following expression into summation form (i.e., F (A, B, C) =3 (...)):

Y = f(4,B,C) = AB + BC

b) Sketch on Figure 1 the input connections necessary to implement the function in part
(a). Observe that the inputs are connected to 0 or 1 depending on the value of the
function for that min term.

Important: Please note that this way we can implement a 3-input function (A, B, C)
using an 8-to-1 MUX. Later we will see how to implement a 4-input function (A, B, C,
D) using an 8-to-1 MUX. For that we will need to inspect the additional input (say D)
with the corresponding function value. The possible inputs to the MUX are 0,1, D, D".

FODD

Figure (1): Half-Adder Functional Diagram.

Page | 43

3.4 Theory

3.4.1 Decoder

The combinational circuit that changes the binary information into 2N output lines is

known as Decoders. The binary information is passed in the form of N input lines. The

output lines define the 2N-bit code for the binary information. In simple words, the Decoder

performs the reverse operation of the Encoder. At a time, only one input line is activated for

simplicity. The produced 2N-bit output code is equivalent to the binary information. The

outputs of the decoder are nothing, but the min terms of ‘N’ input variables lines as shown

in figure 2.

D,
.
N

iInputs .

L

-
—>

N to 2"
Decoder

Figure (2): General Decoder block diagram.

Example show 2 to 4 Decoder. Let 2 to 4 Decoder has two inputs Al & A0 and four
outputs Y3, Y2, Y1 & YO0. The block diagram of 2 to 4 decoder is shown in the following

figure.

E —>»

2to4

Decoder

—> Y3
—> Y
p—p Yy

—> Y

Figure (3): 2 to 4 Decoder with enable.

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is

‘1’. The Truth table of 2 to 4 decoder is shown below.

Page | 44

Enable Inputs

E Al A0 Y3 Y2

0 X X 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 1

1 1 1 1 0
Table 1

Y1l

o O, O O

YO0

o O o~ O

Each output is having one product term. So, there are four product terms in total. We

can implement these four product terms by using four AND gates having three inputs each

& two inverters. The circuit diagram of 2 to 4 decoder is shown in the following figure.

Ay

Ao —1

UL

E

Figure (4): 2 to 4 Decoder circuit.

3.4.2 Encoder

Y3

Y2

Y1

Yo

An Encoder is a combinational circuit that performs the reverse operation of Decoder.

It has maximum of 2N input lines and ‘N’ output lines. It will produce a binary code

equivalent to the input, which is active High. Therefore, the encoder encodes 2N input lines

with ‘n’ bits. It is optional to represent the enable signal in encoders.

Page | 45

M

2 input Lines

M output lines

ENCODER

Figure (5): General encoder block diagram.

Example show 4 to 2 Encoder. Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & YO
and two outputs A1 & AO. The block diagram of 4 to 2 Encoder is shown in the following

figure.
Y3 =—>
R
YZ > 4to2 1
Encoder
Y{ =— —> Ao
Yo =——>

Figure (6): 4 to 2 Encoder.

At any time, only one of these 4 inputs can be ‘1’ to get the respective binary code at

the output. The Truth table of 4 to 2 encoder is shown below.

Outputs Inputs
Y3 Y2 Y1 YO Al A0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1
Table 2

We can implement the above two Boolean functions by using two input OR gates.

The circuit diagram of 4 to 2 encoder is shown in the following figure.

Page | 46

Figure (7): 2 to 4 Decoder circuit.
The Priority Encoder solves the problems mentioned above by allocating a priority

level to each input. The priority encoders output corresponds to the currently active input
which has the highest priority. So, when an input with a higher priority is present, all other
inputs with a lower priority will be ignored.

The priority encoder comes in many different forms with an example of an 8-input

priority encoder along with its truth table shown below.

Lowest Priority Inputs Outputs
Do — Oumt b Dy DsD.Ds D; D, D, | Q;QQ
pI—— —> D 000000 1000
Dy —p - 0O 00DO0O0DOTI11Tx |00 1
D: —| OX3) 00000 1xx |0 10
Dy —» ET::?::ET — > 0 00O0 1 xxx |0 11
D —p» 0D 0D 1 x x x x 100
Dg —p» 0 0 1 x x x x x 1 0 1
Dy —»» 0 1 x x x x x x 110

Highest Prionity 1T X X X X X X X 1 1 1

(a) 8 to 3 priority Encoder block diagram. (b): 8 to 3 priority Encoder truth table.

Figure (8): 8 to 3 priority Encoder.

3.4.3 Multiplexer

Multiplexer is a combinational circuit that has maximum of 2" data inputs, ‘n’
selection lines and single output line. One of these data inputs will be connected to the
output based on the values of selection lines. Since there are ‘n’ selection lines, there will be
2" possible combinations of zeros and ones. So, each combination will select only one data
input. Multiplexer is also called as Mux.

Example show 4 to 1 Mux. 4x1 Multiplexer has four data inputs 13, 12, 11 & 10, two
Page | 47

selection lines s1 & s0O and one output Y. The block diagram of 4x1 Multiplexer is shown in

the following figure.

Ipb — 4axi

1; ——>{ Multiplexer

I

Figure (9): 4 to 1 Mux block diagram.

One of these 4 inputs will be connected to the output based on the combination of
inputs present at these two selection lines. Truth table of 4x1 Multiplexer is shown below.

Selections Outputs
S1 S2 Y
0 0 lo
0 1 I1
0 0 I2
1 1 I3
Table 3

We can implement this Boolean function using Inverters, AND gates & OR gate. The

circuit diagram of 4x1 multiplexer is shown in the following figure.

-

S1

S0 —1_

R — | p—

I

=
=Dy

Io

Figure (10): 4 to 1 multiplexer circuit.

Page | 48

3.4.4 De-Multiplexer

De-Multiplexer is a combinational circuit that performs the reverse operation of
Multiplexer. It has single input, ‘n’ selection lines and maximum of 2" outputs. The input
will be connected to one of these outputs based on the values of selection lines. Since there
are ‘n’ selection lines, there will be 2" possible combinations of zeros and ones. So, each
combination can select only one output. De-Multiplexer is also called as De-Mux.

Example show 1x4 De-Multiplexer. 1x4 De-Multiplexer has one input I, two
selection lines, s1 & s0 and four outputs Y3, Y2, Y1 &Y0. The block diagram of 1x4 De-
Multiplexer is shown in the following figure.

—
> Y=
1x4 Y,

I > De-Multiplexer
—> Y4
—> Yo

(I

S1 So
Figure (9): 1 to 4 De-Mux block diagram.

The single input ‘I’ will be connected to one of the four outputs, Y3 to YO based on

the values of selection lines s1 & sO. The Truth table of 1x4 De-Multiplexer is shown

below.
Selections Outputs
S1 S2 Y3 Y2 Y1 YO
0 0 0 0 0 I
0 1 0 0 I 0
0 0 0 I 0 0
1 1 I 0 0 0
Table 4

Page | 49

We can implement these Boolean functions using Inverters & 3-input AND gates.

The circuit diagram of 1x4 De-Multiplexer is shown in the following figure.
I

S1

I

Y2

Y

Yo

elefs

Figure (10):1 to 4 De-multiplexer circuit.

Page | 50

3.5 Procedure

3.5.1 Constructing a 4-to-2 Encoder with Basic Gates

Constructing a 4-to-2 Encoder with Basic Gates (Module 1T-3004 block Encoder 1).

1. Insert connection clips according to Figure 11.

u1
Figure (11): wiring diagram of 4-to-2-line Encoder.

2. Connect +5V of module 1T-3004 to the +5V output of fixed power supply section of

IT-3000.

3.Connect inputs A~D to Date Switches SW0~SW3 respectively; outputs F8 and F9 to

Logic Indicator LO and L1.

4.Follow the input sequences for D, C, B, A; in Table 5 and record the output states.

@)
W
>

F9

F8

PRk~ ~olooloolooo|O
R olo|loor|kr|l|lklooolo
olr|rkloolr|rkloorirlolo
or or|or|lor o/rlokr|o

Page | 51

,_\
s
RN

==

able 5

3.5.2 Constructing 9-to-4-Line Encoder with TTL IC

1. The 74147 (U5) on block Encoder 2 of module 1T-3004 is used in this section of
the experiment. Connect +5V of module 1T-3004 to the +5V output of fixed power
supply. Note that the IC uses only 9 inputs.

Al F1
o—Y: o F—CQmss
A2 i F2
Oo—: ¢ —O
A3 us F3
o—=s :|—0
Ad " : Fé
O—: A) LsB
AS s
o—s
74147
A6 . . A9
O—s 2 —0
AT AB

Figure (12): 74147 BCD Priority Encoder.

2. As you know, the main kit has 2 sets of DIP switches, with 8 switches each: 1.1-
1.8 and 2.1-2.8. Connect inputs A1~A8 to DIP Switches 1.1~1.8 and A9 to 2.1 (or
one of the unused main switches S1-S4). Connect outputs F1~F4 to Logic
indicators L1~L4. Follow the input sequences given in Table 6 and record output
states. Be aware of the active LOW and active HIGH polarity for the inputs/outputs

when interpreting the results.

A9 A8 A7 A6 A5 A4 A3 A2 Al F4 F3 F2 F1
0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1

Page | 52

1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 1 1
1 1 1 1 1 0 0 0 0
1 1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 1 1
1 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1 1
Table 6

3.5.3 Constructing 2-to-4 Line Decoder with Basic Gates

1. Block Decoder 1 of module IT-3004 will be used in this section of the experiment.

Connect +5V of module 1T-3004 to the +5V output of fixed power supply.

B A

us us

us F1

us F2

g

;

us F3

!

us F4

Figure (13): 2-to-4 Decoder.
2. Connect inputs A, B to Data Switches SW0 and SW1. Connect outputs F1~F4 to Logic

Indicators LO~L3 respectively.

3. Follow the input sequences for A and B in Table 7 and record output states.

Page | 53

B A F1 F2 F3 F4
0 0
0 1
1 0
1 1
Table 7

3.5.4 Constructing 4-to-10 Line Decoder with TTL IC

1. U6 (7442) on block Decoder 2 of module 1T-3004 will be used in this section of
the experiment. 7442 is a BCD-to-Decimal decoder IC. BCD: Binary Coded

Decimal.
uL1—O
A
Lsa O—= 1 P20
2 =0
Cﬂ)i 1p—0
0
c us
O—u s PO
[
D
mse O—= 7 p
)
s pl—)

Figure (14): 4-to-10-line Decoder.

2. Connect inputs A, B, C and D to the Data Switches SWO0, SW1, SW2 and SW3,
respectively. Connect 10 outputs to corresponding Indicators LO~L9.

3. Adjust the switches according to Table 2.2. Observe the output states at LO~L9.
Record input and output logic states in Table 8. (Note input is the binary number

for number in first column).

Page | 54

Input Output
D)C[B|A]|D 1 2 3 4 5 6 7 8 9
0
1
2
4
5
6
T
8
9
Table 8

3.5.5 Constructing 2-to-1-Line Multiplexer with basic Gates

1. Block Multiplexer 1 of module IT-3005 will be used as a 2-to-1 MUX. Connect
+5V of module IT-3005 to the +5V output of fixed power supply.

F1

Figure (15): 2-to-1 Multiplexer.

2. Connect inputs A, B to Data Switches SWO0, SW1; Selector C to SW2. Connect
output F3 to Logic Indicator LO.

3. Follow the input sequences in Table 3.5 and record states of F3. Which input (A
or B) determines the output for each value of C? Does this correspond to a 2-to-1

Multiplexer as you know it?

Page | 55

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
Table 9

3.5.6 Constructing 8-to-1 Line Multiplexer with IC
1. Block Multiplexer 1 of module IT-3005 will be used as a 2-to-1 MUX. Connect

+5V of module IT-3005 to the +5V output of fixed power supply.

Oim

O—4os m;—o
O—pos ap O
O—=Ho4 aP—0O
o3l u3

0_202 ALOLSB
O—3o1 s O
O—Hoo cP—QOwss
_ u4
DO—oQ—OD

7404

Figure (16): 8-to-1 MUX.

2. Refer to the data sheet for specifications of the 74LS151. A, B, C are the control
(selection) inputs: CBA is the value of C then B then A. So, CBA=011 means that
C=0, B=1, A=1. Q is the output of the MUX.

When CBA = “000”, data at DO is send to output Q.
When CBA =“010”, data at D2 is send to output Q.

When CBA =“1117, data at D7 is send to output Q.
The IC will function properly only when STROBE = “0”.

Page | 56

3.5.7

When STROBE = “1” IC do not change output according to inputs, Q will remain
13 1 ,’.

3. Connect inputs DO~D7 to DIP Switch 1.0~1.7; inputs C, B, A to Data Switches
SW2, SW1, SWO. Follow the input sequences in Table 6, adjust DO~D7 and CBA

and record output states. Determine which input among DO~D7 does Q depend

on.

Q

P PR, P, OOOO0ND
PR RPOORFrRPEFRrOOoDD
P O, OFR,r O, O W

Table 10

Using Multiplexer to implement a Logic Function
Given the following function:

1.

Page | 57

F (A, B, C, D)=} (0,2,4,5,7,8,10,11,15)
Implement the function using the 8-to-1multiplexer using Block Multiplexer
1 of module IT-3005. Note that we have 4 inputs for this function. Three of
them will be represented by the controls C B A.
Connect inputs D, C, B, A to Data Switches SW3, SW2, SW1 and SW0
respectively. Connect output Y (Q) to Logic Indicator LO.
Connect the Inputs DO~D7 to the proper input from: {0,1,D,D’} based on
comparing the value of Y and input D for a fixed C B A value: 0 if Y=0 for
D=0 and D=1, 1 if Y=1 for D=0 and Y=1 for D=1, D if Y=0 for Y=0 for D=0
and Y=1 for D=1 and D’ if Y=1 for D=0 and Y=0 for D=1.

Record output states in Table 11.

oo oXr
cocowm
oo
o oU

0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
Table 11

3.5.8 Constructing 1-to-2 Line Demultiplexer with Basic Logic Gates
1. Block Multiplexer 1 of module 1T-3005 will be used in this section. Make the

connections according to Figure 3.9. Connect A to Data Switch SWO; C to SW3;
F1 and F2 to Logic Indicators L1 and L2 respectively.

Figure (17): 1-to-2 Demultiplexer.

2. Set C to “0” and change data at input A. Observe how F1 and F2 changes. Set C

to “1”, change A and observe how F1 and F2 react to changes of A.

C A F1 F2 F3
0 0
0 1
1 0
1 1
Table 12

3.5.9 Constructing 1-to-8-Line Demultiplexer with CMOS IC

1. U6 (4051) on block Demultiplexer of module IT-3005 is used in this section of the

Page | 58

experiment. Connect +5V, -5V of module 1T-3005 to the +5V and -5V output of fixed power

supply respectively.
EQ—Hcom v fE—O
v O
o O—inn v2F2—QO
v [2—0O
us Al
mss ¢ OQ—={c vs P—0O
sO—Hs ve P—O
1ss AQ—Ha v F—O

Figure (18): 1-to-8 Demultiplexer

2. Connect E to DIP1.0; D to DIP1.1; A to SWO; B to SW1; C to SW2; outputs YO~Y7 to Logic
Indicators LO~L7 respectively.

3. At D=0, apply the input sequence 1->0->1->0 to the common input E and observe outputs
YO0~Y?7. Did the outputs change as the input sequence is applied? Why?

4. At D=1, apply the input sequence 1->0->1->0 to the common input E and observe outputs
YO0~Y?7. Did the outputs change as the input sequence is applied?

5. Using the same sequence for E (1->0->1->0) with D=0, follow the sequence for A, B and C

given in Table 13. Record output states.

YO Y1 Y2 Y3 Y4 Y5 Y6 Y/

RRrRrROOCOO(N
RPRrOORROOW
RPOROROROD>

Table 13

Page | 59

3.6 PostLab

1
2
3.
4

Implementing one 4 to 16 decoders using 3 to 8 decoders.
Implement 1x8 De-Multiplexer using lower order Multiplexers. Show how to solve it.
Implement 16x1 Multiplexer using lower order Multiplexers Show how to solve it.

Design a Majority Circuit; a circuit that takes 4 inputs A, B, C, D and 1 output Y. Its output equals 1

when 3 or 4 of the inputs are 1. You can only use two 4x1 multiplexers.

A combination circuit is specified by the following three Boolean functions:
FI1(A,B,C)=>(2,4,7)

F2(A, B, C)=} (0, 3)

F3(A,B,C)=3>(0,2,3,4,7)

Implement the circuit with a decoder construction with NAND gates. Use block diagram for the
decoder. Minimize the number of inputs in the external gates.

Page | 60

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 4. Digital Circuits Implementation using Breadboard

4.1 Objectives

++ Understanding the NAND and NOR gate characteristic and how to implement circuit

¢+ To continue the previous experiment with simple digital devices and their operations using breadboard.

4.2 Equipment Required
% KL-22001 Basic Electricity Circuit Lab

+ Breadboard
¢ Integrated circuits (Chips):
» 1C 7404 (inverter)
IC 7408 (2-input AND)
IC 7432(2-input OR)

IC 7400(2- input NAND)

vV VYV VWV V¥V

IC 7486 (2-input XOR)

Page | 61

4.3 PrelLab

1) Watch the video in link bellow to understand what the breadboard is and how it is works and the
way components, including chips are connected to the breadboard as was done in experiment 1.
https://www.youtube.com/watch?v=gwcVr5VIXwA

2) Recall how to identify the pins of a chip. You may find the following presentation useful:
https://www.youtube.com/watch?v=Y9vsZTpnDDI

3) Design and implement the following circuit using the gates on the chips as shown in Figure 1(.

Your final circuit must include the IC’s, their pin numbers, and the connections between the

pins.).

b)

Page | 62

Build Full Adder using basic gates.

Build the bellow circuit using universal gates.

Build a 3x8 Decoder (active low) using basic gates.

Build an 8x1 Multiplexer using basic gates.

Build a 1x4 Demultiplexer using NAND gates.

Use the 2x4 decoder to implement a 2 inputs function that acts like an equivalence gate
(XNOR): gives 1 on the output if both inputs are equal.

https://www.youtube.com/watch?v=gwcVr5VfXwA
https://www.youtube.com/watch?v=Y9vsZTpnDDI

4.4 Theory

441 T74xx ICs Family

The first family of logic chips to really catch on was Texas Instruments 74 series
TTL. These contain bipolar transistors, run on 5V, are fast and use rather a lot of power.
However, the 74xx numbering scheme has persisted. For example, a 7400 (seven-four-zero-
zero) is a quad NAND gate. Today you can buy 74C00, 74HC00, 74HTCO00, 74LS00, and
74S00. Those are 5V families. Then there is low (3.3V or lower) voltage families like
74LVC, 74AUP and so on. Some of these use bipolar transistors, others (these days most)
use CMOS transistor technology.

Note: There are several of logic ICs numbered from 74xx onwards with letters (xx) in the middle of
the number to indicate the type of gate as shown in Figure 1. Figure 1 shows some digital gates with

identification numbers and pin assignment.

Page | 63

5400/ 7400 5402/7402
Quad MAND gate Quad NOR gate

[15] [iz] [u] [w] [o] [&] vmmmmmmm
THIH [

01 [0 [15] F.
L]] B [[[[2] IS EN N EX I E N EX I CR N BN
Quad AND Gate QuadOR gate
[5] o] [u] [w] [o] [s] ?HF\TII_IIEIITII?I
T [l
01 (D] ([D).
L] 2] B L [0 [s] 5 L] 2] BT LT [0 [s] [7]
Fmﬁ%ﬁga%mm Fm;ﬁﬁrmmm

FTT Dl [b
D1 D1 [P P P
LT BT GT BT B & 0 O T T BT BT T 1

Figure (1): DIGITAL GATES IN IC PACKAGES.

4.4.2 Breadboard

The breadboard consists of two terminal strips and two bus strips (often broken in the
center). Each bus strip has two rows of contacts. Each of the two rows of contacts are a
node. That is, each contact along a row on a bus strip is connected (inside the breadboard).

Bus strips are used primarily for power supply connections but are also used for any
node requiring a large number of connections. Each terminal strip has 60 rows and 5
columns of contacts on each side of the center gap. Each row of 5 contacts is a node as
shown in Figure 2.

You will build your circuits on the terminal strips by inserting the leads of circuit

Page | 64

components into the contact receptacles and making connections with 22—-26-gauge wire.
There are wire cutter/strippers and a spool of wire in the lab. It is a good practice to wire

+5V and OV power supply connections to separate bus strips.

Often gap here

ummlsmp S [sessslgii] [N

Figure (2): The breadboard. Lines indicate connected holes.

The 5V supply MUST NOT BE EXCEEDED since this will damage the ICs
(Integrated circuits) used during the experiments. Incorrect connection of power to the ICs
could result in them exploding or becoming very hot - with the possible serious injury
occurring to the people working on the experiment! Ensure that the power supply polarity
and all components and connections are correct before switching on power. You can learn

more about the breadboard by click in this link https://youtu.be/gwcVISVIXwA

Page | 65

https://youtu.be/gwcVr5VfXwA

4.5

Procedure
In this experiment, we will use a breadboard to implement different circuits using

basic gates and NAND and NOR gates to build other gates. Before that, there were some

instructions to build a circuit and the common problems.
Building the Circuit:

Throughout these experiments, we will use TTL chips to build circuits. The steps for wiring

a circuit should be completed in the order described below:

1.
2.
3.

10.

Turn the power (Trainer Kit) off before you build anything!

Make sure the power is off before you build anything!

Connect the +5V and ground (GND) leads of the power supply to the power and
ground bus strips on your breadboard.

Plug the chips you will be using into the breadboard. Point all the chips in the
same direction, with pin 1 at the upper-left corner. (Pin 1 is often identified by a
dot or a notch next to it on the chip package)

Connect +5V and GND pins of each chip to the power and ground bus strips on
the breadboard.

Select a connection on your schematic and place a piece of hook-up wire between
the corresponding pins of the chips on your breadboard. It is better to make the
short connections before the longer ones. Mark each connection on your
schematic as you go, so as not to try to make the same connection again at a later
stage.

Get one of your group members to check the connections before you turn the
power on.

If an error is made and is not spotted before you turn the power on, Turn the
power off immediately before you begin to rewire the circuit.

At the end of the laboratory session, collect your hook-up wires, chips and all
equipment and return them to the demonstrator.

Tidy the area that you were working in and leave it in the same condition as it

was before you started.

Page | 66

Common Causes of Problems:

Not connecting the ground and/or power pins for all chips.
Not turning on the power supply before checking the operation of the circuit.
Leaving out wires.

wires into the wrong holes.

o & w0 DN PE

Driving a single gate input with the outputs of two or more gates

Modifying the circuit with the power on.

4.5.1 Verification of basic logic gates

In this task you are to verify the operations of some of the ICs.
1. Test each chip using the IC tester and make sure that it is functioning properly.

2. Place each chip shown in Figure 4.1 on the breadboard in such a way that its pins are not
short-circuited. Make sure power is off while you place IC’s and connect wires.

3. Connect GND and +5V for each chip you want to check. Connect the gate inputs to the dip
switches and the gate output to any LED. Determine the output for each possible input
combination and compare your results with the expected Truth Tables.

4. Verify the function of the 7400 (2-input NAND) chips by observing how the output of the
Gates changes in response to input changes.

a) how does the gate act if one of its two input is held at “1”?

b) how does the gate act if its two inputs are connected together?
4.5.2 Build circuits using Gates

1. Implement the following circuit in Figure 3 using basic gates and fill the truth
table (Table 1).

=D

Figure (3): Circuit 1 using basic gates.

Page | 67

F1

RRolo|>
== Lss)

Table 1

What is the Boolean function for above CirCUit?........c.oveeeeeeeeiiieeee e

2. build the above circuit (In Figure 3) using NAND gates only first draw it in box

then implement it using breadboard and IC’s.

-

_

~

/

3. build the above circuit (In Figure 3') using NOR gates only first draw it in box

the implement it using breadboard and IC’s.

-

_

~

)

4. Implement the following circuit in Figure 4 using basic gates and fill the truth

table (Table 2).

Page | 68

L2

. !

Figure (4): Circuit 2 using basic gates.

F1

R olrloloololo|>
Rlolrlolooololm
Rlolkrloloo ool

Table 2
What is the Boolean function for above CirCUit?.......ccouueeeeeeeeeiiieeeeee e

5. Draw the above circuit (in Figure 4) using NAND gates only.

4 N

. /

Page | 69

6. Draw the above circuit (in Figure 4) using NOR gates only.

4 N

. /

7. Implement the following circuit in Figure 5 using basic gates and fill the truth
table (Table 3).

| :))>!

Figure (5): build circuit 3 using basic gates.

F1 F2

Rk olo|>

ol lol@

Table 3

What is the Boolean function for above CIrCUIT?.......ccooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens
WAL ThiS CITCUIT AO... ettt e et ee e e e

Page | 70

8. (Adder) Use any needed gates shown in Figure 1 and the designs you
prepared as a pre-lab to implement the full adder, test your design by verifying
the truth table of the Full Adder.

-ﬂ%,D) O ;

Ci —m

Co

Figure (6): Full Adder.

9. (Decoder) Use any needed gates shown in Figure 1 and the designs you
prepared as a pre-lab to implement the 2x4 decoder. Test your design by verifying
the truth table of the DECODER.

514T >C' .

m—T>C .|.
T111

Figure (7): 2x4 decoder.

a) How do you go about adding an Enable (E) signal to the decoder? Modify the
implementation to show that. (Design Only)

- /

Page | 71

b) How to use that to implement a 3x8 decoder. Show all work in your post lab.

10. (Multiplexer) Use any needed gates shown in Figure 1 and the design you prepared as a pre-
lab to implement the 4x1 multiplexer. Test your design by verifying the truth table of the
MUX.

I

F=ABW+ ABX+ ABY+ ABZ

Figure (8): 4X1 Multiplexer.

a. Use the just constructed 4x1 multiplexer to design a three inputs network that
gives 1 if the majority of its inputs are 1 and outputs a zero otherwise
(Design Only).

b. Implement f(x, vy, z) = m(0, 1, 4, 6, 7), using 4x1 MUX. Show all work in

your post lab.

Page | 72

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 5. Sequential Logic Circuits

5.1 Objectives

+ To understand the differences between combinational and sequential logic circuits and the applications

of various memory units.
% To study the operating principles and applications of various flips.
% To understand the operating principles of counters and how to construct counters with JK flip-flops.

¢ To study the synchronous and asynchronous counters.

5.2 Equipment Required
++ IT-3000 Basic Electricity Circuit Lab
¢ IT-3007 J-K Flip-Flop Circuits.
++ IT-3008 Flip-Flop Circuits.

5.3 PrelLab

1) Using proteus build the following circuit and show why you use the components:

a) Prepare all sections.(read all experiment to find the prelab equstions)

2) For each used IC, search for its datasheet that explains exactly what a component does
and how to use it.

Page | 73

54 Theory

5.4.1 Sequential Circuits

Any digital circuit could be classified as either a combinational or a sequential

circuit. Combinational logic circuits implement Boolean functions. Boolean functions are

mappings of inputs to outputs. These circuits are functions of input only.

Sequential circuits are two-valued networks in which the outputs at any instant are
dependent not only upon the inputs present at that instant but also upon the past history
(sequence) of inputs. The block diagram of a sequential circuit is shown in Figure 1. The

basic logic element that provides memory in many sequential circuits is the flip-flop..

Input

Combinational
Logic Circuit

Output

Paositive

Previous
State

Memory

Feedback

Figure (1): Sequential Circuit Block Diagram.

5.4.2 Latches

Latches form one class of flip-flops. This class is characterized by the fact that the
timing of the output changes is not controlled. Although latches are useful for storing binary

information and for the design of asynchronous sequential circuits, they are not practical for

use in synchronous sequential circuits.

5.4.2.1 The SR (Set-Reset) Latch

It is a circuit with two cross-coupled NOR or NAND gates.

a) SR latch with NAND gates:

The one with NAND gates is shown in Figure.2. Note that this circuit is an

active low set/reset latch; that means the output Q goes to 1 when S (set) input is

Page | 74

0 and goes to 0 when R (Reset) input is 0. The condition that is undefined is when

both inputs are equal to 0 at the same time.

S RIQQ

1] ! Siset) —— | % A
H)DI 0 1001

= 1 1|0 1 (aflerS=1,R=10)

sl 011 10

| . L |
: 1 Q' 1 1|1 0 (after§=0,8=1) e |
] ! | R (Teset) § ol

Figure (2): SR latch with NAND gate.

b) SR latch with NOR gates:
Design the Logic Diagram, function table of the SR latch using NOR gates, and

explain how it works. (Prelab)

¢) RS latch with control input:
The RS latch with control input C is shown in Figure 3. If C=0 the output Q

does not change regarding less the R and S values. If C= 1the circuit will work

normally.

RN
: Q

Next state of Q

No change

No change

Q = 0; Reset state
Q = 1; set state
Indeterminate

N S T S S Y (o}
el =R i 7]
—OoroX |

D y
) I —

Figure (3): RS latch with control input.

Page | 75

5.4.2.2 The D Latch
The D latch was developed to eliminate the undefined condition of the indeterminate

state in the RS latch. The D latch and its state table is shown in Figure 4.

D
Q
{—— CD Next state of
P ’ 0X No change
10 Q = (; Reset state
11 Q = I; Set state
‘ o
I

Figure (4): D-Latch.

5.4.3 Flip-Flops

Like latches, flip-flops are also used for storing binary information, but the difference
is: The output change in the flip-flop occurs only at the clock edge while in the latch it
occurs at the clock level.

A flip-flop can be implemented using two separate latches. Figure 5 shows the D flip-

flop implemented with two D latches.

D ——D D e)
D latch D latch
(master) e (slave)

CLK {>c

Figure (5): D flip flop implemented with two D latches.

There are several types of flip-flops, the common ones are D, T, and JK flip flops.

Figure 6 shows these flip flops and their function tables.

Page | 76

22 Flip-Flop

o aF 2 | ec+n
— CcLKE 0 .! 1y Reset
Q- 1 } 1 Set
K Flip-Flop
4K Qe + 1)
— J .
X = a O Oie} MNo change
CLE _ 0 1 O Raset
1 U 1 o 1 Set
1 O (r) Complement
F Flip-Flop
— T Q- Qe+ 1
—)
TR 5 O (i} No change
1 () Complement

Figure (6): D, JK, and T flip flops.

5.4.4 Registers

Digital systems use registers to hold binary entities. The register is a collection of flip
flops; N-bit register consists of N flip-flops. Figure 7 shows simple 4-bit register
implemented with D- flip flops. All the flip-flops are driven by a common clock, and all are

reset simultaneously.

i
Aj

= =
!
&g p— = = =
P - -~ | o~ .
oy A] M] g 4 =
- . . 5
- - . - [
b
" - " x
!
o
= =]
e e ey o

Figure (7): 4-bit Register.

Shift register is a group of flip-flops connected in a chain so that the output from one

flip-flop becomes the input of the next flip-flop. Figure 5.8 shows 4-bit shift- right register.

Page | 77

Serial Ay D D

(8]

input

S ¢

CLK

Figure (8): 4-bit shift- right register.

5.45 Counters

50 Serial

outpul

The counter is a special-purpose register; it is a register that goes through a

prescribed sequence of states.

The counters are classified into two categories: Ripple and Synchronous counters. In

ripple counters, there is no common clock; the flip-flop output transition serves as a source

for triggering other flip-flops. In synchronous counters, all flip flops receive a common

clock. Figure 9 shows 3-bit ripple and synchronous counters.

- W - AR = A

W I

o]
A

Qi
Pay

el
Wi

Q2 Q1 Qo

(@)

CLK

o]

<

A
=

Q2

|

5 < ’ CLK

Q1

(b)

Figure (9): (a) 3-bit ripple counters, (b) 3-bit synchronous counter.

Page | 78

5.5 Procedure
5.5.1 Latches and Flip flops

A) Constructing RS latch with Basic Logic Gates

Use IT-3008 module to construct the circuit shown in Figure 10. Connect inputs A3, A4 to
Pulser Switches SWA A (TTL), SWB B (TTL). Connect outputs F6 and F7 to Logic
Indicators L1, L2. Follow the sequences in Table 1.

+5V
R2
1.2K
A3
U5 Fé
us F7
Ad
R3
1.2K
+5V
Figure (10): RS latch.
A3 A4 F6 F7
0 0
0 1
1 0
1 1

Table 1

Page | 79

B) Constructing RS latch with control input

Use IT-3008 module to connect the circuit shown in Figure 11. Connect inputs Al, A5 to
Pulser Switches SWA A, SWB B and follow the input sequence in Table 2.

+5V

12K
A10—- UG — e
CcK2
+5V
Us F7
As0—q| U6
R3
1.2K
+5V

Figure (11): RS Latch with control input.

Al A5 F6 F7
0 0
0 1
1 0
1 1
Table 2

C) Constructing 9-to-4-Line Encoder with TTL IC

Use 1T-3008 module to construct the circuit shown in Figure 12. Connect Al to SW1; CK2
to SWA A and F6 to L1. Follow the sequences in Table 3.

Page | 80

+5V

1.2K
A1 ue
us F6
CK2
us F7
uée
U4 R3
1.2K
Figure (12): D Latch.
+5V
CK2 Al F6
0 0
0 1
Il 0
Il .
Table 3

D) Constructing 2-to-4 Line Decoder with Basic Gates

Use IT-3008 module to construct the circuit shown in Figure 13. Connect CK2 to SWB B
output; Al to SWO0; A5 to SW1; F6 to L1. Follow the sequences in Table 4.

A1

+5V

us

CK2 00—

us

+5V

R2
1.2K

us

Us

R3
1.2K

O F&

0O F7

Page | 81

Figure (13): JK Latch.

CK Al A5 F6
n 0 0
ﬂ.. 0 1
n 1 0
n 1 1
Table 4

E) Constructing JK Flip-flop with master- slave RS latches

The master-slave flip-flop cancels all timing problems by using two SR flip-flops
connected with each other. First flip-flop acts as the “Master” circuit, which triggers on the
leading edge of the clock pulse while the other acts as the “Slave” circuit, which triggers on
the falling edge of the clock pulse. This results in the two sections; the master section and the
slave section being enabled during opposite half-cycles of the clock signal.

Use IT-3008 module to construct the circuit shown in Figure 14. Connect CK2 to Pulser
switch. Connect CK1 to SWA A output; J to SW1; K to SWO0; F1, F2, F6, F7to L3, L2, L1
and LO respectively. Follow the sequences in Table 5

Master Latch Slave Latch
+5V
4 /
C TR
J°_U4>_u5 u T -
us ﬁ o F6
ua)
CK1 0=
us >|) U I P
i us us
Ko ud L %
- R3
1.2K
v
5V

Page | 82

Figure (14): JK Flip-Flop.

F1 F2 F6 F7

R | | o o|lX
R Rk O | oO|lug

o o o e o |

Table 5

55.2 Registers

A) Constructing 2-to-1-Line Multiplexer with basic Gates

1. Block Shift Register 1 of module 1T-3008 will be used to construct the circuit

shown in Figure 15.

e e e e e

Figure (15): Shift Right Register.
2. Connect B (clear) to SWO; A (I/P) to SW1,; CK to SWA A output; F1, F2, F3, F4
to L1, L2, L3, L4 respectively.
3. Set SWO to “0” to clear B and then set SWO to “1”’.
4. Follow the input sequence for A(I/P) below, and observe output display at F1, F2,
F3 and F4:
a) at A=“1”, send in a CK signal from SWA
b) at A=“0”, send in a CK signal from SWA
c) at A=“0”, send in a CK signal from SWA
d) at A=*17”, send in a CK signal from SWA

Page | 83

B) Constructing 8-to-1 Line Multiplexer with IC

Use Shift Register 2 module in 1T-3008 which is 4-Bit Shift Register with serial and
parallel synchronous operating modes, it has serial input (B1) and four parallel (A-D) Data

inputs, and four Parallel Data outputs (QA-QD) as shown in Figure 16.

a1 O—={mooe ckP—Oc

us

81 (O——{sERIAL INPUT LoanfieO o1

C A C
13 |z |1 jio g 3 g 5
F1 F2 F3 F4

Figure (16): shift register with serial and parallel load.

1. Complete the following connections:
Inputs A, B, C, D to SWO0, SW1, SW2, SW3 Outputs F1, F2, F3, F4 to
L0, L1, L2, L3, B1 (I/P) to DIP2.0, A1 (MODE) to DIP2.1.

Input
MODE CK
Control (Al) €1 Dl
L Ik X
H X Il
Table 6

2. Connect CK (C1) to the clock generator TTL level output at 1Hz and change data
at B1 with DIP2.0. Follow the input sequences for Al in Table 7. Observe and

record the outputs.

Page | 84

Input Output
- L.2 B LO

|
[o—
—
LS}

Al

ol B B e e

i

Table 7

3. Connect LOAD (D1) to the clock generator TTL level output at 1Hz. Set Al to
“1” and follow the input sequences for A, B, C and D in Table 8. Observe and

record the outputs.

Input Output
D1 D C B A L3 L2 L1 LO
Tk 0 0 1 0
JL 1 0 1 0
JL 1 1 1 0
Il 0 1 1 1
JL 0 1 1 0

Table 8

5.5.3 Counters

A) 2-bit Synchronous Counter

Use IT-3007 module to implement the 2-bit synchronous counter shown in Figure 17.
Connect CLK input to pulser switch.
Connect counter outputs Q1 and QO to indication lamps.

Apply clock pulses to CLK input. Observe and record the outputs in Table 6 (a)

o & w b oF

Apply counter outputs Q1 and QO to seven segment display. Observe and record the outputs in
Table 9 (b).

Page | 85

Q J Q J &
£ < CLK
—Q ~ — Q' K
Q1 Qo

Figure (17): 2-bit Synchronous Counter.

CLEK Q1 QO CLEK D1
JL JL
= 0h W =
JLu T
JTL L
o ey B JL
JTL JL
o gy 3 EE
L §
T EE S
T T
) (b)
Table 9

B) Using Multiplexer to implement a Logic Function

Divide-by-8 counter is 3-bit counter that counts from 0-to-7:

1. Use the IT-3007 module to implement the 3-bit (divide by eight) Ripple counter shown in Figure 18.

2. Connect CLK input to pulser switch.

3. Connect counter outputs Q2, Q1 and QO to indication lamps.

4. Apply clock pulses to CLK input. Observe and record the outputs in Table 10 (a).
5

. Apply counter outputs Q2, Q1 and QO to seven segment display. Observe and record the outputs in
Table 10 (b).).

Page | 86

+5V +5V +5V

Q Jrs Q J Q J ¢
< <] <prCLK
Q" K Q' K — Q" K
Q2 Q1 Qo

Figure (18): 3-bit Ripple Counter.

|

&

o
1

Q2 01 Qo CLK | D1

m i = == == R e
m = I R e = =

-
-
S

(b)

Table 10

Task?2: Modify the circuit in Figure 17 to be 3-bit Synchronous Counter. Attach the design with this
experiment report.

Page | 87

C) BCD Counter

Locate the BCD counter (IC 7490) on 1T-3008 module, which is shown in Figure 19.
Functional block diagram of U1 is shown in Figure 20.

3. Connect C3, C4 to SW0 and SW1,; D1, D2 to SW2 and SW3; F1~F4 to L1~L4,
A2 to SWA A output; B2 to SWB B output.

4. 2. Connect F1to B2, set C3, C4, D1 and D2 to ground and A2 to SWA A pulse.
Measure and record the outputs F1, F2, F3, F4.

LSE MSB
F1 F2 F3 F4

L1LL

QA QB Qc Qp

U1l

RO(1) RO(2) R9(1) R9(2)

YIS

Gd Ca

Figure (19): IC 7490 BCD Counter.

QA as QG Qo
Q o (o)
_A —
CKA QO — L—g> CK > CK

0 .

R9{1) R9(2) RO(1) RO{2)

Figure (20): 1C 7490 BCD Counter.

Page | 88

D) Divide-by-8 counter using BCD chip counter

6. Connect RO(2) (pin3) to +5V and connect RO(1) (pin2) to QD (pinll) output. This will make
counter reset after 111 (or 7). WHY?

7. Connect clock A2 (pinl14) to pulser switch.

8. Connect the outputs A, B, C, and D to indication lamps

9. Apply clock pulses to A2 and observe the count sequence (0000-0111).

Task 3: change the connection of counter in Figure 5.19 to count from:

- 0-to-5

- 0O-to-4

5.6 Discussion

1.

Although latches are useful for storing binary information, they are rarely used in sequential circuit
design, why?

What is the disadvantage of the RS flip flop.

What is the difference between “synchronous” and “ripple” counters?

Page | 89

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 6. Sequential Logic Circuits using Breadboard and IC’s

6.1 Objectives

% To learn how to use some Integrated Circuits (ICs) such as seven-segment display driver/decoder
(IC7447) and counters (IC7490).

¢+ To understand the function of the seven-segment display and how to find its pin assignment.

++ To build one or more-decade counters with seven-segment displays.

6.2 Equipment Required
+ IT-3000 Basic Electricity Circuit Lab.
% 7447 BCD to Seven-Segment Decoders/Drivers.
++ 7490 Decade and Binary Counters.

6.3 PrelLab

1) What is the appropriate display type (common anode/common cathode) that must be used

with 7447 display decoders? Explain your answer.

2) Assuming that the turn-on voltage for the LEDs is 1.7v, what is the proper value of the
resistors to be connected between the 7447 decoder and the seven-segment display, to limit
the current in the LED segments to 10mA?

Page | 90

3) Assume that the resistors provided in the lab are 220Q. What would the current flowing into
the LEDs be?

4) Design a decade counter circuit using the 7490 counters, the 7447 decoder and a seven-

segment display. Show the pin numbers on the ICs in your design.

6.4 Theory

6.4.1 Seven-Segment Display

The seven-segment LED display is a common device in consumer electronics, from
calculators to clocks to microwave ovens. In this lab, you will learn the basic principles of
operation of the seven-segment display as well as the process of converting BCD values to
the proper signals to derive this display.

The display has seven separate bar-shaped LEDs, arranged as shown bellow. In

addition, many seven-segment displays have one (or two) circular LED used as a decimal

point.
a
f b
e g c
d

Figure (1): Seven-segment Display.

Inside the seven-segment display, one end of each LED is connected to a common
point, which is tied either to ground or to the positive supply, depending on the device. If
the seven-segment display is designed to have the common connection tied to the positive
supply (+5V), as shown in Figure 2 (left-hand side), it is called a common anode

configuration. To turn on these LED segments, the inputs logic must be set to low.

Page | 91

If the seven-segment display is designed to have the common connection tied to the
ground (0V), as shown in Figure 2 (right-hand side), it is called a common cathode

configuration. To turn on these LED segments, the inputs logic must be set high.

Common Anode Common Cathode
g f Vec a b g f Gnd a b
[1 1 1 1 1 1 1 [l [1 [l
=
a
f b

Figure (2): common anode/cathode displays.

In both configurations, current-limiting resistors are used to lower the amount of
current that the driver sends into the LEDs. This achieves two goals:
1- Control the brightness of the LEDs.

2- Prevent over-current (that may burn the LEDs).

6.4.2 BCD-to-seven-segment Decoder

A BCD-to-seven-segment decoder is a logic circuit used to convert the input BCD
into a form suitable for the seven-segment display.

In this lab the IC type 7447 decoder will be used. The 7447-pin assignment is shown
in Figure 3. Its pin description is shown in Table 1.

Page | 92

- ™
PlIS 14 13 12 11 10 9
Y I O I I I
Vee f g a b c d e
7447
) 7-Segment Display
Decoder
BI/

B C
O O O o o oo .
4 5 6 7,8

St e

Inputs Inputs

LT RBORBI p A GND
3

Figure (3): 7447 pin assignment.

Pin name Description
ABCD BCD inputs: D is the most significant input (DCBA)
a,b,cdefg Decoder output (Active Low)
RBI Ripple Blanking Input (Active Low)
Blanking Input (Active Low)
BI/RBO Ripple Blanking Output (Active Low)
LT Lamp Test input (Active Low)
Table 1

- LT should be high for normal operation and when pulled low, all seven-segments
will be turned on.

- RBI must be high if blanking of a decimal zero is not desired.

- BI/RBO can be used as input or output. If Bl is high, and LT is low, all 7
segments are on. This function can be used to see if all the LED segments are
working. Bl is used to turn off all these segments, when pulled low. If A, B, C, D,

and RBI are all low, and LT is high, then all 7 segments are off. In this situation, -

Page | 93

the RBO goes low (response condition).

- For normal operation without blanking, the three inputs: LT, RBI, and BI/RBO

should be connected to +5V (given that they are active low).

6.4.3 Counter

In this lab the 1C type 7490 counter will be used. The 7490-pin assignment is shown

in Figure 4 and reset/count function table is shown in Table 2.

INPUT

A NC Qpa Qp GND Qg Qc
14 I'IS 12 11 |10 9 a8

Qp an Qg

—C A, Qc

—op> B Rg(2)

Ro(1) Rogz) Ra1)
1 2 3 I 4 ' s 6 7

INPUT Rog1) Roygz)
B

NC

Vcc Rg(1) Rayz)

Figure (4): 7490 counter pin assignment.

Page | 94

Reset Inputs Outputs
RO(1) RO(2) R9(1) R9(2) |Qp Q¢ Qg Qp
H H L X L L L L
H H X L L L L L
X X H H H L L H
X L X L COUNT
L X L X COUNT
L X X L COUNT
X L L X COUNT

Table 2: Reset/count function table.

6.5 Procedure

6.5.1 BCD counter

A) Testing lamps in the display
1. Place the display and the 7447 chips on the breadboard.
2. Implement the circuit shown in Figure 5.
3. Connect pin 4 and pin 5 of the 7447 decoders to the +5V.
4. Connect pin 3 (LT) of the 7447 decoders to the ground. All 7 segments must

be turned on. (This is to verify that all segments in the display are working

properly).
+5V +5V/
Decimal output |
Vo a ,;_Aﬁp.*,i
_ 1A) b N
Decoder o
e I ¢ p— VWAV J
d Common
d —v— 4 anode
e)
f
D 7447 f —\WA—
A
BCD GND g ':’—"-“"W—E'
input

Figure (5): display-decoder connection.

B) Blanking all segments
Connect pin 4 (BI) of the decoder to the ground. All 7 segments must be turned
off. You may leave the circuit connected (to be used next).

C) Implementing one decade counter
In this part, you will build a counter that counts from 0 to 9.
1. Connect the circuit that you designed in part 4 of the pre-lab. Show the
design and the connected circuit to your instructor/assistant before

Page | 95

turning on the power.
2. Apply clock pulses to pin 14 of the 7490-counter using Pulser Switch
(SWA).
3. Observe the counting sequence on the display D1 and complete Table 3
4. Apply clock pulses to pin 14 using “pulse generator” of the IT-3000
Basic Electricity Circuit Lab. Observe the count sequence.
D1

Table 3

6.6 Post Lab

1. Design a two-decade counter that counts from 00 to 99.
2. Add additional input to your design that can be used to reset the counter.
3. Modify the counter to count to 59 (without Reset).

Page | 96

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 7. Constructing Memory Circuits Using Flip—Flops

7.1 Objectives

¢+ Understand the basic structure of Random Access Memory (RAM).

¢+ Understand and test the circuit of 64-bit Random Access Memory (RAM).

7.2 Equipment Required
++ 1T-3000 Basic Electricity Circuit Lab
% IT-3011 Memory Circuits.

7.3 Theory

7.3.1 CONSTRUCTING RANDOM ACCESS MEMORY (RAM) WITH D FLIP-
FLOP

Two different types of basic structure for RAM given below:

1) Inthe RAM circuit of Figure 1 (a), the input and output are not separated. There
are two control terminals: one is the R/W terminal (R for READ or OUTPUT, W
for WRITE or INPUT) and the other one is the ENABLE terminal.

Page | 97

Page | 98

/ 1101 !0t ;
u2 1 bit 1 bit H
J? WR1 ! | ramt WR1 | ramz |
! cst cs2
110 Q=t=—t D Q
1102 1102
1 bit 1 bit
WR2 1 : 1 ram WR2 | ram2
cs1 cs2
G | 0 1
o) I
- A
WIR cs
(a) (b)

Figure (1): (a) One bit memory using a flip flop. (b) Two-bit memory with 1x2 decoder.

When CS=0, tri-state gates U1 and U2 do not operate, so data input is not
possible, the flip- flop output Q is not sent to the I/O terminal.

When CS=1, WI/R controls the D flip-flop. When W/R' =1, U1 opens but U2
does not, I/O will accept data input. If W/R'=0, the exact opposite will happen
and 1/0O act as the data output.

Figure 1 (b) shows another connection that will increase the RAM capacity.
When CS1=1, RAML1 I/O1 and 1/02 are selected. Address line A is used to
select between RAM1 and RAMZ2. Since there is only one address line, we
can only select from 2 RAMs. In Figure 1 (b), each CS can only select a 2-bit
RAM, so the total capacity is 2x2.

1) InFigure 2, a 2-address (2-bit) RAM circuit has independent input and
output. When Address=0, input D1 is enabled and the content of D1 will

be made available at the output.

When Address=1, input D2 is enabled and the content of D2 will be made
available at the output. The ENABLE terminal must be activated in order

to allow the output to correspond with the constantly changing inputs.

D1

D2

Address

Enable
Figure (2): Implementation of the two-bit memory presented in Figure 1 (a).

Output

Commercial random-access memories may have a capacity of thousands of

words and each word may range from. The logical construction of a large

capacity memory would be a direct extension of the configuration as shown in

Figure 3. The two address inputs go through a 2x4 decoder to select one of the

four words.
Input data
Word 0 - - >
¥ 1 ¥ v
! B =l R |- = B == BC
: 2 t 1
Address ,
inputs Word 1 3] 1 3
2 w4] R | RO | | R | RO
decoder
: t i]
Word 2 + + + i
| BC = BC |»= - BC = BC
Memory EN i i i L)
enable Word 3
M 3
. ¥ 1 ¥ ¥
- BC = BC [-» = BC = BC
Read/WTrite i i i ?

Page | 99

Figure (3): Logical construction of a 4x4 RAMS.

Output data

7.3.2 64-BIT RANDOM ACCESS MEMORY (RAM) CIRCUIT

Like ROM, RAM is also a memory element. The data selection process is controlled
by the address selectors. The length of data is related to the number of data variations. For
example, if there are 4 data then 2”4 or 16 data variations exist.

The number of address lines determines the number of locations. If there are 4
address lines, then 2*4or 16 locations exist. A 4-bit data can be stored in each location,
since the total capacity is 16x4, where the 4 is the number of data while 16 is the number of
address lines.

Figure 4 shows the 7489 IC, which is a 16x4 memory with 64 memory capacities.
Also, its function table.

[OV

pro— ¥ sSs==s ME | WE
b1z O——] TS T T ME | WE
DI3 O Fuitn
D4 O g:’ “ [] “‘ | nl.

7409 o0z 0 [| Read
A0 O— oD3 I [] l Tati - .
Ato— nhibit storage
A20— I [| Do nothine
A3 O =

o—q 3|
o0—q 3|

Figure (4): Block diagram of 16x4 RAM chip.

- When ME' = 0 and WE' = 0, the memory is enabled, and the input process starts. The
input and output terminals are separated. The output terminals are open-collector type
so resistors “RXx*4” must be added to the supply voltage. Since the output terminal of
7489 is open-collector type, the outputs can be connected in parallel, as shown in

Figure 4. The operating sequence will be controlled by ME' and WE'.
- When A4A5=00, A is selected, ME' and WE' of B, C and D all equal to “1”.

Similarly, when A4A5=01, B is selected, ME' and WE' of C and D all equal to “1”. E

IS 2-4 decoders with “0” as its output. The unselected outputs are in high or “1” state.

Page | 100

Since the outputs will have high impedance when ME' and WE' are both “1”, each
R/W' control of 7489 are connected to an OR gate to ensure that when ME'
WE' will be equal to “1” too.

When ME' = “0”, WE' is controlled by external R/W' control so that the “READ”

operation is

performed if R/W'= “1”. The “WRITE” operation is performed when R/W'=“0".

The 7488 is a 256-bit open-collector ROM which has similar structure as the 7489.

Their methods of expansion are similar as well.

111

O+

R4

OO0

01

oz

AS Al

[- |

oH O W
oz O
Dix O
DM O
Tasa
A00
FXT- A
A2 O
A0k WME1 WE1
= il |
R O
-
Taps
B
WMEz WE2|
S il |
— Ve
TaBS
c
ME3 WE3,
[T> il |
L
— e
Ta83
D
ME4 WE4
T T

Page | 101

Figure (5): Block diagram of 16x4 RAM chip.

{03

7.4 Procedure

7.4.1 Latches and Flip flops

A) RAM block with D Flip-Flop of module 1T-3011 which is shown in Figure 6 will be

used in this part.

u1

s1Or

13

u1

uz2

F1

Figure (6): RAM block with D Flip-Flop of module 1T-3011.

B) Connect E1, S1, D2, D1 to Data Switch SW0~SWa3 respectively. Connect outputs F1,
F2, F3 to Logic Indicators L1~L3. Refer to the input sequence in Table 1 and record all

outputs. Discuss and explain the results to your TA.

Input Output
El S1 D2 D1 F3 F2 F1
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
Table 1

Page | 102

C) Then, set module 1T-3011 and locate block RAM Circuit. Insert connection clip
according to Figure 7, connect +5V, +15V of module 1T-3011 to the +5V, 15V output

of fixed power supply respectively.

+12v

+12v +5v

3 CR1
oz Qo o E1AZ R1 2208
2 Do 4
4 “
o1 O—-m TR, 9 F2 */”CcR2 R2
1 b
220R
A3 OiAD 3 7 F3 XZce Rl
D Do 4
a2 O AR R
Cc DO
Al 15 AD 1 CR4 R4 220R
B
1]AD
A O —
A N
2 3
$1 82

Figure (7): Open Collector 4x4 RAM.

D) Connect inputs D4~D1 to DIP Switch 1.0~1.3; A3~A0 to DIP 2.0~2.3; S1 (ME) to
Pulser Switch SWAA, S2 to Data Switch SWO. Outputs are indicated by CR1~CR4.

E) Set SW0 (WE') to “0” for the “WRITE” task. Start from address 0000, input data to
A0~A3 by setting the DIP switch. Activate SWA once to write the data into its
assigned address. Repeat this process for all the addresses, ending with 1111. Record

what was written into each address in Table 2 under the “WRITE” column.

Page | 103

Address Write
A3 |AZ AT |AD |\ yE |wE | D4 D3 | D2 DI
o000 0 —L 0
O ofalfil —L 0
Oy of 1|0 |] 0
O o1 1 _' 0
o1 {00 —l 0
Ol 11071 —|_ 0
01 110 |7 0
o1 1 1 __ 0
1|0 0]D —l 0
1001 —|_ 0
1o 1]0 —|_ 0
1|01 1| 0
1 1 10| 0 __ 0
1 1101 —[0
1 1 1|0 —|_ 0
| 1 1 | —|_ 0

Table 2

F) Now set SWO (WE’) to “1” for the “READ” task and connect S1 (ME') to Pulser
Switch SWA. Observe states of CR1~CR4 and record under the “READ” column in
Table 3.

Page | 104

Address Read
A3 | A2[A1L|A0 | wE |WwE[F | F3 | F2 | FI
ojofoflo| ||
ofofo 1| []1
olofrlolf 1
olol oo I
ofrfofol |1
oot] []1
ool of 1
ol I
tlofofol |1
tlofol] 11
tlofr{o] []1
tlof oo JIi
tlfrfofol I
Lo [0
NERERER R
Lo Jri

Table 3

- What you not from two table?

G) Disconnect SWA and “A” clip, then turn off the main power switch of IT- 3000 for
about 10 seconds and turn it on again. Change address and press SWA then attempt to
read the data. Are they still stored in the RAM?

H) Disconnect “B” clip, VCC disappears. Repeat Step 5 to see if the data are still stored in
the RAM.

7.5 Post Lab
1. Design a 4x16 RAM using four 4x4 RAMS.

2. Although D latches are useful for storing binary information, they are not used in RAM circuit

design, why?

Page | 105

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 8. Introduction to QUARTUSII Software

8.1 Objectives
% To learn how to use QUARTUS Il and write code using Verilog HDL language.
% To learn how test code and make symbol from code.
+¢+ To learn about FPGA and how download code from QUARTUS Il to FPGA

8.2 Equipment Required
% QUARTUS Il program.
% FPGA Board

8.3 PrelLab

1) Hereisalink to an HDL tutorial:
https://www.youtube.com/playlist?list=PLnyw11VVZpaTukmt80aNs7gT74U3vboDYTr

2) Quartus Il introduction:
https://www.youtube.com/watch?v=uG1GTRelG3lI

https://www.youtube.com/watch?v=TdLghgrVREQ

3) Download Quartus from this link below:

http://www.mediafire.com/file/eqd7xidoan3exqv/90 quartus free.exe

4) Using Quartus to build the following circuit:
a) Build half adder on data flow.

Page | 106

https://www.youtube.com/playlist?list=PLnyw1IVZpaTukmt80aNs7gT74U3vboDYr
https://www.youtube.com/watch?v=uG1GTRelG3I
https://www.youtube.com/watch?v=TdLqbgrVREQ
http://www.mediafire.com/file/eqd7xidoan3exqv/90_quartus_free.exe

Page | 107

Build the Ful adder using half adder structural.
Build a 2-bit counter on behavioral.

Build an 8x1 Multiplexer on behavioral.

Build a 2x4 decoder using basic gates (structural).

Show the wave form for above parts.

8.4 Theory

8.4.1 QUARTUS Il Program

Quartus enables analysis and synthesis of HDL designs, which enables the developer
to compile their designs, perform timing analysis, examine RTL diagrams, simulate a
design’s reaction to different stimuli, and configure the target device with the programmer.
Quartus includes an implementation of VHDL and Verilog for hardware description, visual

editing of logic circuits, and vector waveform simulation.

QUARTUS"II

Figure (1): QUARTUS Il logo.

8.4.2 FPGA Board

FPGA stands for field-programmable gate array. That’s quite a mouthful, so let’s start
with a basic definition. Essentially, an FPGA is a hardware circuit that a user can program to
carry out one or more logical operations. Taken a step further, FPGAs are integrated circuits,
or ICs, which are sets of circuits on a chip—that’s the “array” part. Those circuits, or arrays,
are groups of programmable logic gates, memory, or other elements.

With a standard chip, such as the Intel Curie module in an Arduino board or a CPU in
your laptop, the chip is fully baked. It can’t be programmed; you get what you get. With these
chips, a user can write software that loads onto a chip and executes functions. That software
can later be replaced or deleted, but the hardware chip remains unchanged.

For FPGA, the programming can be a single, simple logic gate (an AND or OR

function), or it can involve one or more complex functions, including functions that, together,

Page | 108

act as a comprehensive multi-core processor.

USB VGA

Blaster Mic Line Line Video RS-232

Pot in In Out Port Port
7.5V DC Power Supply
Connector I t 1 1 1 t t

w S ol i
N
24-bitAudio CODEC
=P PS/2 Port
Power ON/OFF —
Switch Expansion Header 2 (JP2)

27Mhz Oscillator (with Resister Protection)

50Mhz Oscillator
24Mhz Oscillator

Altera USB Blaster
Controller chipset

Expansion Header 1 (JP1)
(with Resister Protection)

Altera EPCS4 Altera90nm Cyclone ll
Configuration Device FPGA with 20K LEs
RUN/PROG Switch_
for JTAG/AS Modes I —

— ard Socket
7-SEG Display Module
10 Red LEDs &% ! i T E T 3 B 8 Green LEDs

‘ - P — v . .~—SMA External Clock
10 Toggle Switches i ! ' .
; \ 4 Push-button Switches

BMbyte SDRAM 512Kbyle SRAM 4Mbyte Flash Memory

Figure (2): FPGA Board.

Page | 109

8.5 Procedure

8.5.1 How to create project in QUARTUS II
e Stepl: Run the QUARTUSII software: double click on the QUARTUS II

item in the desktop.

e Step2: When you open QUARTUS II the windows in Figure 3 will appear,

then select option Create New Project Wizard or you can start new project by

select option File then select New Project Wizard as shown in Figure 4.

Getting Started With Quartus® Il Software %

Start Designing

requires a project

Designing with Quartus Il software

Click hereStart Learning

[~ Don't show this screen again

Page | 110

cﬁ’:g:j“i‘wwg:i:)“ Open Interactive Tutorial J
Open Existing Project |
Web links:
Lterature | | Training Online Demos Support | Alﬂm i

Figure (3): How to create new project (first way).

@ uartus 1

File Edit View Project Assignments Processing Tools Window Help
D New.. N b oo S sees (B> o0k |0 |®|w|o|
& Open k0 x
Close Ctrl+F4
(2 Open Project... Ctrl+)
Convert MAX+PLUS Il Project...
Save Project
Close Project
I sove Cirl+S
Save As...
Save Current Report Section As...
File Properties...
Create / Update 4
Export... —
Convert Programming Files... —;|
I Page Setup...
[& Print Preview
& print.. Ctrl+P
Recent Files Famming files),
Recent Projects
B AtsF4 e
< I
*|_Type |vessag
System | P) Estalnfo), Info) Waring), Cilical Waming) Enor), § |)\ Flag /
: [Message: ﬂ ﬂ | Location:

Figure (4): How to create new project (second way).

e Step3: Then the window in Figure 5 will be shown, press next for First

window.

Page | 111

Page | 112

*
*
L
L

Step4: Then Later, a window will appear asking you to enter the project storage
location and the name of the project. After filling out the information, you will be
clicked on the next option at the bottom of the screen. As shown in Figure 6. Then

another window will appear asking to enter previously existing files. If there are

New Project Wizard: Introduction

The New Project Wizard helps pou create a new project and preliminary project settings, including the
following:

Project name and directary

Mame of the top-level design entity
Project files and libraries

Target device family and device
EDA toal settings

You can change the settings for an existing project and specify additional project-wide settings with

the Settings command [Assignments menu). You can use the various pages of the Settings dialog box
to add functionality to the project.

™ Don't show me this introduction again

\' Ned> | Cancel

Figure (5): First Windows.

no files, click on the Next option.as shown in Figure 7.

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] X

what is the working directory for this project?
|c:\altera\9l]'\maﬂm J

‘what is the name of this project?

ITesl _,

What is the name of the top-level design entity for this project? This name is case sensitive and must
exactly match the entity name in the design file.

|Tesl _I

Use Emisting Project Settings ...

< Back Next > Finish Cancel

Figure (6): Project Folder, Project Name, Top-Level-Entity.

Page | 113

MNew Project Wizard: Add Files [page 2 of 5] X

Select the design files you want to include in the project. Click Add All to add all design files in the
project directory to the project. Note: you can always add design files to the project later.

Fie name: || _l Ad |

File name [Type | Library | Design entry/sy... | HDL version Add All |

< >

Specify the path names of any non-default libraries. User Libraries. .

< Back Next > Finish Cancel

Figure (7): Add existing files.

e Step5: In Figure 8, show the windows where we can choose the family of FPGA
we went to use and the number of FPGA, then select Finish.

Page | 114

8.5.2

Mew Project Wizard: Family & Device Settings [page 3 of 5]

Select the family and device you want to target for compilation.

Page | 115

~ Device family Show in ‘Available dewice' st
Fannily: ICycIone] ;I Package: Any -
Devices (Cyclone NI . Pin count: Any -
L JFLEX10K
~ Target devw{ FLEX10KA || Speed grade: |Any - I
" Autod Etgg%& ¥ Show advanced devices
@ Specifif MAX I I~ HardCopy compatible onl
_ Ma{30004, |
MaxFO00AE
Available dey MAX7000E
Mame MAX70005 [O ¥... | LL& :o rlf... | Memor... | Embed... I PLL ~
EP2C204F45418 1.2 18752 315 239616 52 4
EP2C20F256CE 1.2 18752 152 239616 &2 4
EP2C20F256C7 1.2 18752 152 239616 B2 4
EP2C20F256CE 1.2 18752 152 239616 &2 4
EP2C20F 25618 1.2 18752 152 239616 B2 4
EP2C20F454C6 1.2 168752 35 239616 &2 4
EP2C20F484C7 1.2 18752 315 239616 52 4
EP2C20F454C8 1.2 18752 315 239616 &2 4 =
C o™ Wi A0 410 1 A 4 0TED B e = lag Nny E7 A
< >
Companion device
n [:I:|_|_|r_ L]
¥ Limit DSP & R&M to HardCopy device resources
< Back Next > Finish Cancel

Figure (8): choose family and number for FPGA.

How to write code using Verilog HDL

1. To make new File, press File > New, the window in Figure 9 will appear.

New x

- SOPC Builder System
- Design Files
: AHDL File
Block Diagram/S chematic File
EDIF File
State Machine File
System¥erilog HOL File
Tel Script File
Verilog HOL File
i WHOL File
=) Memory Files
: Hexadecimal [Intel-Farmat] File
- Memory Initialization File
[=1- Verification/D ebugging Files
- In-System Sources and Probes File
- Logic Analyzer Interface File
- SignalTap Il Logic Analyzer File
-~ Wector Waveform File
[=1- Other Files
~ AHDL Include File
- Block Symbal File
- Chain Description File
- Synopsys Design Constraints File)

OK | Cancel

Figure (9): to create new files.

- There are three choice in this window:
A) Verilog HDL File: use to write the code Verilog HDL.
B) Vector Waveform File: use to test code.
C) Block Diagram /Schematic File: to make symbol from code.

2. For this lap we choose Verilog HDL File from Figure 9. Then a white screen will

appear on which we will write the code. the Figure 10 show simple code for half
adder.

Page | 116

e [| s
== 1 Emodule half adder(a,b,cout,s); // Implement a half-adder
= 2 input a, b: // Inputs to be added together
s 3 output cout, s; // Output, carry (cout) and sum (s)
— 4
i 5 assign {cout,s} = a+b; // add a and b,
i = € // ...result in cout and s.
) 7
A % 8 endmodule|
%%
pa
'ﬁaf
| =
=2
< >

Figure (10): simple code for half adder.

Important note: This file is used to enter your Verilog code; you must save the file as the name of
the module. Look to Figure 11.

juartus/Test - Test

Assignments Processing Tools Window Help

BB |0 [t ﬂl!ﬁ!@@@m\»»;w|-¢q;\;|@|mgju‘m

<% $ Verilogl.v | Save s x

Savein: quartus v = @ cF
B Verilog1 v* I)] ck
N Date modified
= 1 Emodule a,b,cout,s); // Implement * am_= ate modit T_m!
c B input 7/ Inputs to be add s [bin 3/27/2022 5:16 PM File fe
s 3 output cout, s; // Output, carry (cout _ common 3/27/2022 5:04 PM File fc
T H [4] | cusp 3/27/2022 5:14 PM File fo
= : assign {cout,s} = a+b; X addI:s:;-u: l:_;, o Deskiop db 3/27/2022 6:30 PM File f¢
EE = N — || drivers 3/27/2022 5:06 PM File fc
45 8 endmodule .1 | dsp_builder 3/27/2022 5:06 PM File fc
% % Libraries | eda 3/27/2022 5:13 PM File fc
S || libraries 3/27/2022 5:07 PM File fc
S [Imf 3/27/2022 5:03 PM File fc
E - sopc_builder 3/27/2022 5:08 PM File fc
esign Units | =
= Y
ol NE
—— >
Time (& =2
File name: aff _adder EI Save
Synthesis Save as type: Verilog HDL File (*.v:" vig:" veriog) - Cancel
24 Raute) [V Add file to cument project
flles)
ing Analysis
t Writer
x (Open Py
Cras Ve Van TV ,w - Y r OV e~ T VA T

Figure (11): how to save file.

Page | 117

3. To run code Right click on the file name and select option Set as Top-Level
Entity then click (start compilation) select this icon' = in top of the screen or
clicking on processing> start compilation. If there is any error, you can see in
white area in bottom of screen.

@ Quartus Il - c/altera/90/quartus/Test - Test - X

File Edit View Project Assignments Processing Tools Window Help

D@2 e ot dxXsees [oF]7 =00 |2 8% w0

Praject Navigator =2 @ ha_adder.v | & Compilation Report - Flow Summary

3 Fies |
b p— haf_adder.v
Open
Remove File from Project
= | & Compilation Report - Flow S
I &3 Compilation Report

Create Symbol Files for Current File ~-&HB Legal Notice =
Create AHDL Include Files for Current File & Flow Summary GETEED B e L I

EHE Flow Settings Quartus Il Version 9.0 Build 132 02/25/2009 SJ Web Edtion
Properties (3B Flow Non-Default Global Se Revision Name Test
in Mai &R Flow Elapsed Time Topdevel Entity Name haff_adder
Gpen in Main Window ZHER Flow OS Summary Famiy Cycone Il
+ Enable Docking &B FlowLog Device EP2C20F4B4CE
Close & Analysis & Synthesis Timing Models Final

&0 Fitter

Iy Hierarchy | B Files | aP Design Units |

Tasks - %
Flow: - [Compilation
Task [
- TEENE
i
o
- < View Quartus [I
[Information
R —— White screen
< >
’: Type | Message ~
EEY) Info: Finished register packing
B Info: Statistics of I/0 pins that need to be placed that use the same VCCIO and VREF, before I/O pin placement
R) Info: I/0 bank details before I/0 pin placement
y Info: Fitter preparation operations ending: elapsed time is 00:00:00
v
< >
E Systern [4])\. ing (25) A Extialnfo A Info(23) Warning [2) Critical Warning Error Suppressed (6] Flag
g]Massage:EInle 2| ¥/ [Location =] Locate
Set the selected file as the top-level entity DR8N [29% &+ 000012 NUM
4 5 = = 7.08 PM
0 Type here to search i C ~ G ® cc ~=m&@ 3 =) E NG

3/27/2022

Figure (12): how to run code.

8.5.3 How to test code

1. To test code, we choose Vector Waveform File from Figure 9. This File is used to check the
functionality of the design works as expected or not. Figure 13 shows a Vector waveform
File.

Page | 118

1|

Master Time Bar: 13.025 ns «| »| Pointer:| 1.15ns Interval 17.88ns Start End |

ps 10.0ns 200ns 300ns
. Value at p P P

19.03ns 19.025ns
|

PP S

el
&

Z i e A X

8|75 e 2 v N e s | B @ 8w
7 8

Ny
-—

Figure (13): Vector waveform File.

2. Thenright-click on the left most side of the window (under Name), then click insert
node or bus, as shown below

Page | 119

LB T r W i 2 & ® B2 e

= 38 exampl /examplel bdf | € Compilation Report - Flow Summary | 1 Waveform1.vwi
B

) Master Time Bar.| 97ns «| +| Pointer: 150ps Intervat| -955ns Stat End
} k A e Vake at ps 9‘I7O.l(lns 200 ns

.7 ns

*% q 97ns
— AT
x
1
| #

Paste »

— Insert Waveform Divider
Zoom »

8%
s 24

Figure (14): insert node or bus.

3. Click on Node Finder and then on List (using the Filter pins: all) and note that file name
in look in option as shown in Figure below. Select all inputs and the output by clicking on
(>>) (you can select one by one).

Page | 120

alyzer

3_files=off --write_settings_§
jestination pin "s™ is 10.%37
vas successful. 0 errors, 0 wa
sessful. 0 errors, 4 warnings

) _Ciical Waming A Enor A Suppre

Step 4
[[»]]
<]
«

Figure (15): Select inputs and outputs.

= Compilat on Report - Flow Summary [y
'a\'\i'avefnrmhvwf
Master Time Bar | 19.025 ns «| +| Pointer: 250 ps Intervat | 1878 ne Start:| End |
[}A Vakoe & ps 10.0ns 200ns 300ns
Name 19.025ns
19,
% Q 9.03ns "
de or Bus b'e
] [Name: | DK
B =
all XE % Type: [inPuT = cance |
H 0 1
e L Vale ype: | HLevel il NndeFrdet...l 'I Step 1
- Radk |ASCH k|
N
.. St Node Finder Ste 5><
v m r{ Nemed: [] Fudd [Pins: ol ~| | customze.. List |
e J““*i@ J Step 2 v] .| W Include subenites Step B Cancel |
Nodes Found: Selected Nodes:
Name | Assignments | - Name [Assignments | -
wa Unassigned | 9 |hali_adderda Unassigned |
i b Unassigned | 9 |hall_adderb Unassigned |
@ cout Unassigned [D |hall_addercout Unassigned ([
@ Unassigned [P |half_adderls Unassigned [

4. You can select the intervals when you want the inputs to be one or zero, either by

shadowing the interval, then press the one level in the tool bar, or by write clicking
the name, then select value > count value, the change the start value, the end value,
and the radix as shown in the following figure:

Page |

121

Master Time Bar: 19.025 ns 4| »| Pointer: 550 ps Interval 18.48 ns Stant: Ops Et

Count Value X
Count Value X
Name Value at Step 3 Counting Timing |
19.03ns Counting l
- AD — Start time: [i [ps j
T Rad Endine: [0 s
ﬁd‘tep i:selectifiput= - hd ime: | lus =]
= cout AX % Start value: I':I Transitions occur
o3 s AX e -
Endvalue: 1 |
I nt by: |1 e
ncrement by I .
Count type Step 4
(% Binary :
" Gray code Count every: I1IJ.IJ I"3 L]
ptep 2 Multiplied by: |1
stepS o]l o |

Figure (16): put value for inputs.

5. Now save the file with the same name as your project and in the same folder.

6. Then, from Processing > Simulator Tool, the window in Figure 14 will appear:

Page | 122

@ Quartus Il - c/altera/90/quartus/Test - T

File Edit View Project Asslgnmcﬂhvolstapwlﬂcln

DEL@ - @ | [O erPrce POO 0> w00 % @ % ae
Project Navigator P Start Compilation ChrleL | @ Compaation Rieport - Flow Summary |) Testwwt | & Simulator Tool
EA ';é‘:‘*' Start v = |[@ 8]
- Update Memory Initizlization File
& Compilation Report Ctrd+R o=l @ 1 =2]
Start Compilstion and Simulation Cirl+ Shift-K o |8 s
Generate Functional Simulation Netlist Ope End 10us
¥ Start Simulation Cel]| - Simudation period
Simulation Debug) * Run simulation undl all vectos stmul are used e e I

& simulation Report Ctrls Shifts R

Step 2
P CT3stie Timing Ansiyzer 100
= £4 PowerPlay Power Analyzer Tool
Hi) Files: | P Design Urit:
Srioanty] : iUy W 55N Analyzer Tool
Tasks ¥ =T
Fow: [Complation - YE ¥&
Task & [Time & | o B
A At XE)
v > yrety 4=
v - e
v > B 8}
v - Osss 3 Analyss
- B EDA Nethst Wrter
% Program Device (Open Programmer)
< >

™ End simulstion s |100 n -

Simulation ophions
¥ fatomatically sdd pirs bo smulstion output wavelcems

[T Check oupite

r

[T Owerenbe srdston input e with snulstion results
™ Genesate Signal Actviy Fle: |

[

I Geneiste VD Fie [

ep 000000 ep

W open |

Type |Message

= 4

854

gmpmmmm,{ Extalnio J, Infof3)) Wamng), Cifical Waring J\ Enor)\ Suppresied)\ Flag /.

Figure (17): to show result.

7. The generated waveform is inserted as simulation input, then press on
Generate Functional simulation Netlist. Then Start after the simulation
finish press on Report to see the output.

How to make symbol from code, make diagram and Schematic File

1. To start new File, press File > New, the window in Figure 9 will appear press

Block Diagram /Schematic File.

2. Thewindow in Figure (18) will appear, to enter components of our design double

click anywhere on the schematic window or select the symbol tool (The little

and gate).

Page | 123

Figure (18): diagram window.

3. This opens the symbol window in which available libraries, including the standard

QUARTUSII library, open this library by clicking on the little plus sign next to it

then select primitives, and then select logic, then select the gate you want in your
implementation.as shown in Figure 19.

Symbol K

Libraries:
= & c/altera/30/quartus/libraries A L

#C1 megafunctions Ll
#E others
= primitives
HE buffer
FE logic
iRl and12

<

MName:

|and2

I”" Repeatinsert mode i

r i

IC La Megaiwiz f i
MegaWizard Plugdn Manager... ‘ L

Concel | |

Figure (19): choose components.

Page | 124

4.

Page | 125

You have to define the inputs and outputs of your implementation, and you do
so by opening the symbol window> primitive> pin, the following figure shows

all the design components that must now be connected, we will build half adder

using gates:

2 Block1.baf~ [o @ =
=] R Sl
A

O %000
gp-ﬁ'?—.JD

Figure (20): build half adder using gates.

To connect the components of the previous figure, select the 900 thin line with
the dots on its ends on the tool bar, this makes your cursor wiring tool that can

be used to connect you circuit. When done, disable the wiring tool by clicking

the arrow on the tool bar.

Rename input and output ports to the variable names of our design, to name a
pin, either double click it to open its pin properties window, or right —click it,

and select properties from the pull-down menu that shows up.

Save your design, and make sure it is named the same as your project, the

following figure shows the completed block diagram of our design.

Blockl.bdf*

&=
kA
o0

A P
&
O ¢

0o
N

10.

Page | 126

Figure (21): connect components.

To run first Right, click on the file name and select option Set as Top-Level
Entity then click (start compilation) select this icon ' = in top of the screen
or clicking on processing> start compilation . If there is any error, you can see

in white area in bottom of screen.
To test diagram, we repeat the same steps in previous section.
We can make symbol from code first Right click on the file name and select

option Set as Top-Level Entity then right click in name of cade file and

choose Create Symbol File for Current File. as shown in Figure 22.

Q Quartus Il - c/altera/90/quartus/Test - Test
File Edit View Project Assignments Processing Tools Window Help

et X/ @Q@e T > ¥n[00 % 9% 40

D@ |&|smr|o
I - "I & hak_addery | € Compilation Report - Flow .| {1 Testuwt | & Simuistor Tool | € Simuation Rieport - Simudat
EQ Fles
i b (c=I=]
Test.wwf T | EEEE TR R ~
> Testbdf Remove File from Project
Set as Top-Level Entity Compilation Report - Flow
Compilation Report rﬁm&nnm-y
‘Create Symbol Files for Current File & B Legal Notice
Create AHDL Include Files for Current File &HER Flow Summary Flow Status Successful - Sun Mar 27 21:38:36 2022
. &SR Flow Settings Quartus Il Version 9.0 Buid 132 02/25/2009 SJ Web Edtion
LS S Flow Non-Default Global S¢ Revision Name Test
Open in Main Window &R Flow Elapsed Time I:::vd Enty Name (1:‘- ,
&HER Flow 0S Summal yclone
_ESEE) &B FlowLog i Device EP2C20F484CH
e &) Analysis & Synthesis Timing Models il
I 1= Sl Fitter Met timing requirements Yes
- ’ — - - &S Assembler Total logic elements 2/18.752(<1%)
A Hierarchy | B Fies | 8P Design Units | od ©-@HE Timing Analyzer Total combinational functions 2/ 18.752(<1%)
Tasks = > Dedicated logic registers 0/18.752(0%)
Total registers 0
Flow: ~[Comilai
[Conpiaton =l Total pins 4/315(1%)
Task & |Time © Total vitual pins 0
+ B P Compile Design 00:00:09 Total memory bits 0/239616(0%)
v Analysis & Synthesis 000002 5 Embedded Mutiplier bt elements 0/52 (0%)
v Fitter (Place & Route) 00:00:03 - -
v Assembler (Generate programming files) | 00:00:03 = IF3 s AT | T
v Classic Timing Analysis 00:00:01 i
- B EDA Netlist Wrter =
& Program Device (Open Programmer) ‘g;:
<

Figure (22): creafé symbol.
11. we want to use this symbol in diagram we search name of symbol (code

name).as shown in Figure 23.

Symbol X

Libraries:
=1 & Project

[+ libraries
3 c/altera/90/quartus/libraries/

< >
Mame:

[alf_adder]

[¥ Repeat-nsert mode
[Insert spmbol as block
I~ Launch Megaiwizard Plug-n

MegaiwWizard Phag-n Manager... I

ok | Cancel |

Figure (23): use symbol in diagram.

Page | 127

8.5.5 How to Download code in FPGA and choose inputs and outputs in
board
1. After verifying that the design works as expected we can install the code on the
hardware (FPGA).
2. To check that the correct device is selected, this can be done using Assignments
> Device.
3. We need 2 switches for A and B (Inputs). 2 LEDs to see the output are needed.
We have to use the user manual of DEL1 to figure out the location of the switches
and the LEDs. The Tables below show the location of the switches.
) DE1 Pin Assignments
A4 -4 L D SV &
[swe H sSwW7 H SW5 ‘ Sw3 H SW1 ’ ’KEYS H KEY2 H KEY1 H KEYO‘
| L2 M2 ui2 | V12 L21 T21 T22 R21 R22
‘swaste' ‘sw:tstszwo
M1 Ut W12 || M22 L22
Lep | [LED | [LED | [LED | [LED| [LED [ED LED | [LED | s
R9 R7 R5 R3 R1 G7 G5 G3 G1
R17 u18 V19 | Y19 R19 Y21 W2717 V21 u21
LED LED | LED LED | | LED LED || LED | | LED LED
R8 R6 R4 R2 RO G6 G4 G2 GO
R18 Y18 | T18 u19 R20 | Y22 | | W22 va2 u22
DD e e w DD I e 2w 222 DI D e o2 w D2 DI I e
©Seattle Pacific University EE 1210 - Logic System Design AlteraBoard-3
Figure (24): pin assignment.
Tablg 2-11. Togqle Switgh FPGA Pin Connections LEDR(Q) PIN_R20 LED Reql]
| . I i [o | LEDR[1] PIN_R18 LED Red[1]
Switch FPGA Pin Descrigtion — T —
S| Pibi_L22 Toggle Switchil] — | e —

}) LEDR[4] PIN_T18 LED Red(4]
5'.".|]1| PIb_L21 Tﬂqyﬂ' Ewi b:l'U] LEDR[5] PIN_V10 LED Red[5)
S| PNME | Togole Swichd] ' worE | Pm_ie L£0 Rect

! E LEDR[7] PIN_U18 LED Red[7)
] PR 12 Togole Switch() LEDRW PI_R1E LED Redl]
Hll!"l_x‘_l Fl” L'”:I T'.‘“_‘lﬁp 5“’.“11:‘1] LEDR[®] PIN_R17 LED Red(?]
— ; ' . ; . LEDG{0] PIN_U22 LED Green[0]
S| PIN L2 Togole Swtch(5) P p—
S FIN_UT1 Toggle Sutch{E] sy | ewwm L£0 Gren)

1 - 1 LEDG(PIN_V21 LED Green[3]
ST PN Togole Swtchi 7] | TR T Pees—
S| Fi_Ait Togole Swtch{d) i LED Greent]

| | . LEDG{8] PIN_Y22 LED Green[8]
e PN | Tugie Suich{F] e P
Figure (25): Pin Assignment for Switches. Figure (26): Pin Assignment for LEDs.

Page | 128

4. To select which inputs and outputs we use we select Assignments > Assignments
Editor then the window in below will appear.

9 Category: | [0 zlos &

=) | | The Assignment Editor is the interface for creating, editing, and viewing individual assignments, induding pin assignments, in the Quartus II software. To create project-wide assignments, use the Set
(Assignments menu). Select the category in which you want to create, edit, or view assignments in the Category Bar, The default category, All, displays all assignments created for the target device
assignment categories display only the assignments that are legal for the target device, Use the Node Filter Bar to display and edit assignments for specific nodes and entities. Refer to the Quartus I
detailed information on assignments and the Assignment Editor.

—lx

|

L

‘U e ULou]

| Edt X[V
From To Assignment Name Value |Enabled
1 0 Partition Hierarchy root_partition Yes
2 <<new>> <<new>> <<new>>

Figure (27): Pin Assignment Editor.

5. Assign PINs for the Inputs and Outputs. You can assign them by selecting all the
schematic file then right click Locate > Locate in assignment editor, the following

Figure appears:
ﬂ # Category: || Locations =] @ ai| & Tming |

¥ Show assignments for spedific nodes:
VI a

¥ ¥ b

v € count

W s v
— A

A

| o spon

This cell specifies the entity or node you want to assign to the location specified in the Location column.

| uoneuLo] (i

To Location Enabled
Yes
b Yes
4 count Yes

'
5
|4 s Yes
Figure (28): choose inputs and outputs.
6. Select Pin in the category and select a switch for input. After that save the pin

assignment. Then the pins will appear in diagram.as shown in Figure 29.

Page | 129

ﬁ [Category: | Pin ;] ﬁ AI\I @Tmrgl » Logtopunnsl
1 = | ¥ Show assignments for specific nodes:
z v a A Check All
& ¥ b
2 W & count ekl
] Yo s , _ Deleeal |
j — A
(= | | This cell specifies the pin name to which you want to make an assignment.
g
3
2

1/0 Bank 1/O Standard General Function | Spedial Function Enabled
5 3.3VLVITL Dedicated Clock CLK4, LVDSCLK2p, In... Yes
5 3.3-VLVITL Dedicated Clock CLKS, LVDSCLK2n, In... Yes
6 3.3-VLVITL Row I/O VREFBENO Yes
6 3.3VLVITL Row /O LVDS81n Yes

Figure (29): choose inputs and outputs in board.

£ hall_adder.v | € simulation Report - Simula... | TR} Test v

| & Simulator Tool

| € compilation Repor

Figure (30): show the pins in diagram.

7. Re-compile the Project so that the new changes in the PINs take place. If the
project name differs from you block diagram file, then you have to set the file as
top-level entity as mentioned before. Download the Program on the FPGA Tools

>Programmer.

Page | 130

Wl Quartus Il - C:/workspace/example1 - example1 - [example1.cdf]
file Edkt Processing Jools Window

L Hardware Setup. I USB-Blaster [USE-0) Mode: |JTAG v| Progress 0%

I~ Enable realtime ISP to allow background progr. (for MAX Il devices)

P Start | File |Dw'ce\ Ithecksun IUse!code ‘ Program/ I \-"eriyl El::k I E wamine I Seg.;ityl Erase I l’.g:dP

Configure
examplel.sof EP2E2CF48\ 0BOS1B FFFFFFFF]

e Auto Detect I

Make sure that the currently selected hardware is USB-Blaster, and then click Start. (Show the results to the instruclorl

& Add File

1 Chenge Fie. |
B saerie |
B Add Device...
£ |
$oon |

JFor Help, press F1

Figure (31): download code in FPGA.

8.6 Taskinlab
1. Create schematic symbols as shown in the figure, Use: Y3Y2Y1YO0 = 0111. What does this circuit

do? Use Verilog to implement the circuit and run a meaningful simulation for this circuit.

¥y ¥ » Yo
Xy YI X3 ? X ? Xo ?
A RS
€ ! €2 | o
FA FA FA FA 1
N [.r? I:l 25
|
; ¥
v N Z
(overflow) (negative) (zero)

2. Use Verilog HDL to implement a 2-to-1 MUX. Use Verilog HDL to implement a Full Adder. Create
schematic symbols for both the MUX and the Full adder, then connect them as shown in the figure.

Run a meaningful simulation for this circuit.

Page | 131

Operation Select

0: Addition
1: Subtraction

Cin . Full Adder » Cout

Sum

3. Use Verilog HDL to implement a 2-bit counter with direct reset input (RESET). Use Verilog HDL to
implement a 2-to-4 Decoder. Create schematic symbols for both the counter and the decoder, then

connect them as shown in figure below. Run a meaningful simulation for this circuit.

RESET

o

CLK _ 2-bnt Counter

A L

2 X 4 DECODER

Tol Tll T}l T3l

Page | 132

8.7 Post Lab

- Design the following circuit:

c_out w[0..3]

sum(D..3] x[0..3]

Four_Bit_Adder

inst 1

B[3.0]
C[p.0] AR.D]

inst4 oo
5 o
M[3..0] e
result[3..0] 13..0] —
Quadhiuxls | B
"""" inst3
8
h[3..0]
result[3..0] 1[3..0]

FourBit And_Amay

B[3.0]

C[p.0] AR.D]

Ouadhuxa |

Page | 133

FourBit OR _Amay

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 9. A Simple Security System Using FPGA

9.1 Objectives

¢+ To practice building different digital components using Quartus either by building a Verilog

codes or Block diagrams.

¢+ Learning how to put some of the digital components, you have studied and build in pervious

lab sessions, together to build useful systems.

¢+ To become more familiar with FPGA programming.

9.2 Equipment Required
¢ A computer with Quartus Il (7.2 +) and USB driver installed
+¢ Altera DE1 system with its datasheets. (For FPGA pins map)

9.3 Pre Lab (Bring a soft copy of your prelab with you to the lab)

1) Prepare each part of the procedure section where it says (Pre Lab).

2) NOTE: It is important that you come prepared, as this will reflect your work time during the
lab plus it will be a critical variable in the evaluation of your lab report:

Page | 134

9.4

Theory

In this experiment, we are going to build a simple security system using Altera
Quartus software. Then we will program and download this system on the FPGA board.
This security system is simply a 2-digit digital lock. The user enters a number of two digits,
such that, the digit ranges from 0 to 3. Thus, every digit has a lower limit of 0 and an upper
limit of 3. The number is entered using a keypad (using the 91 switch keys build in our
FPGASs). Each digit is represented by a 7-segment display and if the total number entered on
the displays equals to XX a green led is on; allowing us to pass. Otherwise, a red LED is
always on, blocking us from passing.

Figure 1 depicts this security system architecture.

| =
' ¢+ RedLed
r— —
[S——! Do .
{
. | i Sreen Led
L x
v

—

| T-Segran Display

Erable (SWe) l
2 Pro

L2

Figure (1): The Security System Architecture.

Page | 135

4bits
1[3:0])

select first or second digit

clk

v

v

Simple Security System

a R('\l l I])

Figure (2): High level view of the system.

> Green LED
// - /_!
—~|\il\ 4,1 ,
// > /_I
7-bits A

L

= *%

E]

As Figure 1 shows, this security system comprises the following components:
9.4.1 4x2 Priority Encoder

The normal digital encoder is a combinational circuit that encodes 2*n input lines by n

output lines. In other words, it generates the binary code equivalent of the input line, which

is active high. However, this kind of encoders has a problem. It only works when only one of

the inputs is active. In other words, if there is more than one input line active, the encoder

will generate the wrong code.

This issue can be resolved using the priority encoder. This kind of encoders prioritizes the

level of each input. If multiple input lines are active, the output code will correspond to the

input line with the highest priority as shown in Figure 3.

The user will use this priority encoder to choose what value to view on a 7-segment display

(values range from 0 to 3 in decimal), for example, if the user switches SW1 to high and keeps
SW2 and SW3 low then the output of the encoder will be b’01.

Lowest Priority

X0
X1
X2
X3

Highest Priority

[l

Priority
Encoder

—> YO
=y

Page | 136

T3z T Iy To|Y1 Yo
B £ z 2 |1 1
O B zr |1 O
0 0 z |0 1
0 0 0 m(0O O

Figure (3): 4x2 Priority Encoder.

9.4.2 Enable Port

The purpose of this port is to allow the user to select which memory system is active,
and hence which 7- segment display to use, for example, if SW4 is high then the En pin of
the first memory system is enabled and ready to read the user input on the 4x2 priority
encoder.

Note: The enable pin of the decoder must be active low while switching between

selection lines of the decoder.

9.4.3 segment display driver

This driver is used to convert the output of the priority encoder to the proper input for
the 7- segment displays, the output of the driver is first stored in a memory unit before it is
transferred to a 7- segment (depends on which memory system is enabled using the 2x4
decoder). Figure 4 show 4x7 7-segment decoder in this experiment we will use 2x7 7-

segment decoder .

a a 7-segment - - -

D—D b b _a_ display ' ' [' U ' U '

° c C). = = e e

Co—C d d f| |b Nz N ' ' [' ' U U '

Bo—B e = f b - [— - -
A—A f elilc >

Clock ° 9 d N g (| == o= o= e

BCD too7C Segment 7- Segment : : '—U '—U U:' '_'

Decoder LED Display ? U_' '_' [:' '_'

Figure (4): 7 -segment decoder.

9.4.4 Memory System

The purpose of such system is to ensure that the value selected by the user to display
on a certain 7- segment is kept there when the user switches to select another 7-segment.
Each memory system consists of seven D- flip-flops and 2x1 MUXs as shown in Figure 5.

When the enable pin equals 0, the output of each DFF becomes its input at every
clock cycle. On the other hand, when the Enable pin becomes 1, the data coming from the

7-segment driver is stored in the each DFF. The output of each DFF is sent on a data bus to

Page | 137

[

L

a 7-segment display.
Note: For each 7- segment display, we need a memory system block

Data out to 3 7-segment

e

(o]
DFF DFF DFF DFF OFF DFF OFF
5. X g % y % "
o o (in 3] = o 2 o x o
=1 l [| l [|
cut
2x1 MUX 2x1 MUX 2x1 MUX 2x1 MUX 2x1 MUX 2¢1 MUX
KA MOX
J | : %'l IAE 35" L‘;?J?J I_A” s I_':_?_‘\F‘_' LAE Se!
T =7 — , - | [
" 1 | | | 1 1]
Enable
x K b x x
Data 0 Data 1 Data 2 Data 3 Data 4 Cats Data 8

FIG 2: Memory System
Figure (5): Memory System.
9.45 Comparator
The input of each 7-segment display is connected also to a comparator. every

comparator has a built-in value (reference) which is compared with the value of the 7-
segment display. If both values are equal, then the output of the comparator is 1, and it is O,
otherwise. For example, if one of the comparators has a reference value equals 5, then its
output will be 1 if and only if the input is equal to=7'b0100100 (which is the value of 5 in

the 7-segment display). The purpose of the comparator is to lock/unlock the security system.

9.4.6 2-input AND gate
This AND gate will make sure that the two 7-segment displays have the correct

combination. In other words, if each comparator output is “1”, then the AND gate output

will be “1”, and the green light is ON. Otherwise, the red light will be always ON.

Page | 138

9.5 Procedure

1. Design a4 x 2 priority encoder by writing and simulating the Verilog code shown
in Figure 6using Quartus. (Pre LAB).

//4 x 2 Priority encoder
module priority_encoder(out, 1in);
input [3:0] 1in;
output reg [1:0] out;
always @ (in
begin
casex(in
4'b0001:0ut = 2"'b00;
4'b001x:out = 2"'b01;
4'b01xx:out = 2'b10;
4'blxxx:out = 2"'bll;
default:out = 2"'b00;
endcase
end
endmodule

Figure (6): 4 x 2 Priority Encoder Verilog Code.

2. Design the 7-segment display driver by writing and simulating the Verilog code shown in
Figure 7 using Quartus. (Pre Lab).

Page | 139

//Seven segment display driver
module seven_segment_display_driver(out, 1in);

input [1:0] in;
output regl[6:0] out;

always @(in)

begin
case(in)
O:out = 7'b0000001;
l:out = 7'b1001111;
2:out = 7'b0010010;
3:out = 7'b0000110;
endcase
end
endmodule

Figure (7): 7-Segment Display Driver Verilog Code.

3. Write and simulate the Verilog code of a D- Flip Flop using Quartus (Pre Lab)

4. Write and simulate the Verilog code of a 2x1 MUX using Quartus (Pre Lab).
Note: The MUX should behave as explained in the memory system section
(check back the theory).

5. Use a block diagram to build the design shown in Figure 8.

6. Write and simulate the Verilog code of the comparator shown in Figure 9 using
Quartus
Note: for simplification, we will build one comparator based on the reference
value X (in this case, it is 5). You can build four different comparators with four

different values to compare with.

Page | 140

D2 o S 1= V14

i
55T S A

as.g

D4
D5 1=V
s, [—

Page | 141

My FlipFlop
A ouT D =1
B CLK
select
inst8 insté
A ouT D QL
B CLK
select
My FlipFlop
Q[2
A ouT D e
B CLK
select
inst10
My MUX
A ouT D QL2
B CLK
select
My MUX "My FlipFiop
A ouT D Ll
B CLK
select
inst12 inst3
"My FlipFiop
Qrs]
A ouT D
B CLK
select
inst13
"My FlipFiop
Qre]
A ouT D
B CLK
select
inst14 515

Figure (8): Memory System Block Diagram.

module comparator(out, in);

input [6:0] 1in;
output reg out;

always @(in

begin
if(in == 7'b0100100
out = 1'bl;
else
out = 1'b0;
end
endmodule

Figure (9): Comparator Verilog Code.

7. Build and design the security system using the components you built in the
previous steps. The final block design should look like the one in Figure 10.
Assign pins values to the security system design you just built and then download

the system on the FPGA board.

Page | 142

=-wEn

i

e

9 01RR00 e

le70l0

waeu3

M-

Tus

WenAn

=y R

isw

i

10000 0D bt

loolo

70 fpi

wos AN

WeN

=

"
£]
i ¥
H w {
| e i
I i

"o 0]

oEue

FIG 4 The Securty System

Figure (10): The Security System Final Block Diagram.

Page | 143

96 Doinlab

6. Change in code to make user enter number from 0-7.

7. Make your system take four different password numbers.

9.7 Postlab

1. Make your system work without encoder (let user enter number directly).

2. Write code for 7 segment drivers working on common anode.

Page | 144

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 10. Simple Computer Simulation

10.1 Objectives

In this experiment we are going to design the Verilog HDL control sequence for a simple computer
(SIMCOMP). The SIMCOMP is a very small computer to give the students practice in the ideas of
designing a simple CPU with the Verilog HDL notation.

10.2 Equipment Required

¢+ A computer with Quartus Il

10.3 Pre Lab
1) Read the experiment to find the prelab.

Page | 145

10.4 Theory

10.4.1 Basic Computer Model - Von Neumann Model

VVon Neumann computer systems contain three main building blocks: the central
processing unit (CPU), memory, and input/output devices (I/O). These three components
are connected together using the system bus. The most prominent items within the CPU are
the registers: they can be manipulated directly by a computer program, See Figure 10.1:
Function of the Von Neumann Component:

Memory: Storage of information (data/program)

Processing Unit: Computation/Processing of Information

Input: Means of getting information into the computer. e.g., keyboard, mouse

Output: Means of getting information out of the computer. e.g., printer, monitor
Control Unit: Makes sure that all the other parts perform their tasks correctly and at the

correct time.

[

WM EMORY
1
1
1
1
INFUT : OQUTPUT
1
1
* Koyboard | * Monitor
* Mouse ! * Printer
* Spanner ! PROCESSING UNIT CLED
* Card reader ' * Disk
* Disk |
1
1
1
1
1
1
1
1
1

A
|
|

;
I
|
|
|
|
I
1

CONTROL UNIT
@

Figure (1): Von Neumann computer systems.

10.4.2 General Registers

1) One of the CPU registers is called as an accumulator AC or 'A' register. It is the

main operand register of the ALU it is used to store the result generated by ALU.

Page | 146

2) The data register (MDR) acts as a buffer between the CPU and main memory. It
is used as an input operand register with the accumulator.
3) The instruction register (IR) holds the opcode of the current instruction.
4) The address register (MAR) holds the address of the memory in which the operand
resides.
5) The program counter (PC) holds the address of the next instruction to be
fetched/execution.
Additional addressable registers can be provided for storing operands and address. This can
be viewed as replacing the single accumulator by a set of registers. If the registers are used for
many purposes, the resulting computer is said to have general register organization. In the case

of processor registers, a register is selected by the multiplexers that form the buses.

10.4.3 Communication Between Memory and Processing Unit

Communication between memory and processing unit consists of two registers:
Memory Address Register (MAR). Memory Data Register (MDR).
To read,

1- The address of the location is put in MAR.

2- The memory is enabled for a read.

3- The value is put in MDR by the memory.

To write,

1- The address of the location is put in MAR.

2- The data is put in MDR.

3- The Write Enable signal is asserted.

4- The value in MDR is written to the location specified.

10.4.4 Generic CPU Instruction Cycle

The generic instruction cycle for an unspecified CPU consists of the following stages:
1) Fetch instruction:

Page | 147

Read instruction code from address in PC and place in IR. (IR «— Memory [PC])

2) Decode instruction:
Hardware determines what the opcode/function is and determines which

registers or memory addresses contain the operands.

3) Fetch operands from memory if necessary:

If any operands are memory addresses, initiate memory read cycles to read
them into CPU registers. If an operand is in memory, not a register, then the
memory address of the operand is known as the effective address, or EA for short.
The fetching of an operand can therefore be denoted as Register «<— Memory [EA].
On today's computers, CPUs are much faster than memory, so operand fetching

usually takes multiple CPU clock cycles to complete.

4) Execute:

Perform the function of the instruction. If arithmetic or logic instruction, utilize
the ALU circuits to carry out the operation on data in registers. This is the only
stage of the instruction cycle that is useful from the perspective of the end user.
Everything else is overhead required to make the execute stage happen. One of the
major goals of CPU design is to eliminate overhead and spend a higher percentage

of the time in the execute stage.

5) Store result in memory if necessary:

If destination is a memory address, initiate a memory write cycle to transfer the
result from the CPU to memory. Depending on the situation, the CPU may or may
not have to wait until this operation completes. If the next instruction does not need
to access the memory chip where the result is stored, it can proceed with the next
instruction while the memory unit is carrying out the write operation.

Below is an example of a full instruction cycle which uses memory addresses for
all three operands:
1- Mull product, x, y

Page | 148

2- Fetch the instruction code from Memory [PC]

3- Decode the instruction. This reveals that it's a multiply instruction, and that the
operands are memory locations X, y, and product.

4- Fetchx andy from memory.

5- Multiply x and y, storing the result in a CPU register.

6- Save the result from the CPU to memory location product.

10.4.5 Addressing Modes

The term addressing modes refers to the way in which the operand of an instruction is
specified. Information contained in the instruction code is the value of the operand or the address

of the result/operand.

[PC][IR]
=

Memory

Figure (2): connection between memory and registers.

10.5 Our Simple Computer

SIMCOMP has a two byte-addressable memory with size of 128byte. The memory is synchronous
to the CPU, and the CPU can read or write a word (or cell) in single clock period.

The memory can only be accessed through the memory address register (MAR) and the memory
buffer register (MBR). To read from memory, you use:

- MBR <= Memory [MAR];

And to write to memory, you use:

- Memory [MA] <= MBR;

1. The CPU has three registers: an accumulator (AC), a program counter (PC) and an

instruction register (IR).

Page | 149

2. The SIMCOMP has only three instructions: Load, Store, and Add.

3. The size of all instructions is 16 bits; all the instructions are single address instructions and

access a word in memory.

15 1211 0
Opcode Address

Figure (3): Instruction format.
Instruction Format

The opcodes are:

Op-code Instruction Description
0011 Load M Loads the contents of memory location M into the
accumulator.
1011 Store M Stores the contents of th_e accumulator in memory
location M.
0111 Add M Adds the contents of memory location M to the
contents of the accumulator.
Table 1
Prelab

1) You must write the basic code shown in Fig 1 at the last page of this experiment in your own

Quartus Il file.

2) You have to trace the basic code manually so that you can understand what does the code do.

Use the following table:

Line # Code Description of what is done

6 reg [15:0] Memory [0:63]

7 reg [2:0] state

13 | Memory [10] = 16°h3020

14 Memory [11] =16’h7021

15 Memory [12] =16’hB014

18 Memory [32] =16’d7

19 Memory [32] =16’d7

22 PC =10; state=0

Page | 150

29 MAR <= PC

30 state =1

33 IR <= Memory [MAR]

34 PC<=PC+1

35 state = 2
38 MAR <= IR [11:0]
39 state = 3
42 state = 4

43 case (IR [15:12])

load: MBR <= Memory

4 | IMAR]

45 add: MBR <= Memory [MAR]

46 store: MBR <= AC

52 AC<=AC + MBR

56 AC <= MBR

60 Memory [MAR] <= MBR

Table 2

3) You have to summarize the objective of Program #1 above, then repeat for Program #2

10.6 Accumulator Based Simple Computer

The Verilog program described by the following table is shown in Fig 1, study, and simulate the

code.
Instructions

Memory location | Instruction assembly | Instruction machine code in Hex
10 Load [32] 0011-0000-0010-0000b 16'h3020
11 Add [33] 0111-0000-0010-0001b 16'h7021h
12 Store [20] 1011-0000-0001-0100b 16'hB014h

Data

32 Data 7 Memory [32] 16'h7
33 Data 5 Memory [32] 16'd5

Page | 151

Table 3

Taskl: Modify the code to include the jump instruction

Choose any opcode e.g., jump=4'b0001, you have to include the execution of jump which changes

the PC to the specified address in the instruction.

Instructions
Memory location | Instruction assembly | Instruction machine code in Hex
10 Load [32] 0011-0000-0010-0000b 16'h3020
11 Add [33] 0111-0000-0010-0001b 16'h7021h
12 Store [20] 1011-0000-0001-0100b 16'hB014h
13 Jump 11 0001-0000-0000-1011b 16'hB014h
Data
32 Data 7 Memory [32] 16'h7
33 Data 5 Memory [32] 16'd5
Table 4

Task 2: Write the General form of the instruction set for Prog #1
Task 3: Trace the Modified code as was done in the prelab but this time using the

waveforms

10.7 Register Based Simple Computer [SIMCOMP2]

Modify the instruction format so that SIMCOMP can handle four addressing modes and four
registers.

This new SIMCOMP2 has four 16-bit general purpose registers, R[0], R[1], R[2] and R[3] which
replace the AC. In Verilog, you declare R as a bank of registers much like we do Memory.

reg [15:0] R [0:3]; // declaration of registers bank

Since registers are usually on the CPU chip, we have no modeling limitations as we do with
Memory - with Memory we have to use the MAR and MBR registers to access the memory.

Page | 152

Therefore, in a load you could use R as follows:
R [IR [9:8]] <= MBR; //where the 2 bits in the IR specify which R register to set.

Task 4: Modify the four instructions of the old SIMCOMP
The new instruction should follow the new form:

1. LOAD RJi], M loads the contents of memory location M into R[i].

2. STORE RYi], M stores the contents of R[i] in memory location M.

3. ADD RJi], R [j], R[K] adds contents of R[j] and R[K] and places result inR[i].

To test your SIMCOMP2 design, perform the following program where:

1. PCstarts at 10,

2. Suppose IR [9:8] is used to specify the register number.

3. In the “add instruction” IR [11:10] destination register, IR [9:8], IR [7:6] sourcel, source2

respectively.

Instructions

Memory . Destination Source . o .
. Instruction . : Instruction set code in binary in Hex
location register | Register/Memory
10 Load R1 3 0011-0001-0000-0011b 16'h3103
11 Load R2 4 0011-0010-0000-0100b 16'h3204
12 Add R1 R1, R2 0111-0101-1000-0000b 16'h7580
13 Store R1 5 1011-0001-0000-0101b 16'hB105
Data
3 Data A Memory [3] 16'hA
4 Data 6 Memory [4] 16'd6
Table 5

Task 5: Write the General form of the instruction set for SIMCOMP?2.
Task 6: Trace SIMCOMP2 code using the waveforms.
Task 7: Add immediate addressing to the SIMCOMP2:

If bit (IR [11]) is a one in a Load, the last eight bits are not an address but an operand. The operand
IS in the range -128 to 127.

If immediate addressing is used in a LOAD, the operand is loaded into the register.

Page | 153

Load R1, 8
R1 <8
Simulate the following test with handwritten comments explaining what you are doing.
PC =10
Memory [10]: Load R1,3 // Load immediate

Memory [11]: Load R2, -4 //Use 2's complement to represent (-4) Memory [12] Add R1, R1, R1
Memory [13]: Store R1,5

Instructions

Memory . Destination Source . o .
. Instruction : . Instruction set code in binary in Hex
location register | Register/Memory
Load .
10 : R1 3 0011-1001-0000-0011b 16'h3903
Immediate
Load '
11 . R2 -4 0011-1010-1111-1100b 16'h3AFC
Immediate
12 Add R1 R1, R2 0111-0101-1000-0000b 16'h7580
13 Store R1 5 1011-0001-0000-0101b 16'hB105
Data
Data A Memory [3] 16'hA
4 Data 6 Memory [4] 16'd6
Table 6

Hint: How to read the 2's complement (8 bit) in Verilog:
MBR <=- (~ (IR [7:0]) + 1)

Task 8: Write the General form of the instruction set for Prog #2 with
immediate load

Page | 154

Bmodule SIMCOMP (elock, PC,
input clock:
output PC, IR, MER, AC, MALE;
reg [15:0] IR, MER, AC;
reg [11:0] PC,MAR;
reg [15:0] HMemory [0:63]:
reg [2:0] state;

parameter load = 4'k0011, store

Einitial hegin
// program

Memory [10] = 16'h3020;
Memory [11] = 16'h7021;
Memory [12] = 16'hEBO14;

// data at byte addres
Memory [32] = 1le'd7:
Memory [33] = 1le'ds:;

{/set the program counter to the start of t43

PC = 10; state = 0}
end

=always [(posedge clock] begin
Ecase (state)
=0: begin

MAR <= PC;

state=1;

end

IR <= Memory[MAR]:
PC <= PC + 1;
state=2; //next state
end
: begin //Instruction decode

Page | 155

IR, MER, AC, MAR);

4'b1011, add=4'b0111;

3g
39
40
41
4

34
45
46
47
48
43
50
51
5

: begin // fetech the instruction from memurygi

55
56
57
58
55
60
61
62
63
64
63

3

MAR <= IR[11:0]:

state= 3;

end

begin // Operand fetch

state =4;

caze (IR[15:12])

load : MER <= MNewory[MAR]:
add : MER <= Mewory[MAR]:
store: MBR«<=ALC;

endcase

end

i hegin //execute

if (IR[15:12]==4'h7] begin

LC<= LC+MER;

state =0;

end

glze if (IR[15:12]
AC <= MEER:
state =0; // next

end

4'hi] begin
state
glse if (IR[15:1Z] == 4'hB) hegin
Memwory[MAR] <= MER;
state = 0;
end
end

endogse
end

Figure (4): Basic code.

At the end of this experiment, you should have two files:
1- An Accumulator Based Simple Computer with 4 instructions as in program 1
2- A register based simple computer with 3 opcodes (noting that the load opcode can be immediate

or normal) as in program 2.

10.8 Post Lab
1. Modify Program #2 so that it finds the sum of three elements and then traces the process

(using waveform).

2. Modify the program in the first part of the post-lab to include the jump instruction with
opcode (jump=4'b1001) and change code to run this code below. (Write the instruction

format)

3. Modify the previous program making it sum 10 elements using a jump (loop) opcode to

sum the 10 elements.

Instructions

Memory . Destination Source . N .
. Instruction . . Instruction set code in binary in Hex

location register | Register/Memory

10 Load R1 3

11 Load R2 4

12 Load R3 -9

13 Add R1 R1, R2, R3

14 Store R1 5

Table 7

Page | 156

L-

9 o
' ») ‘Q
*
Birzeit Unlver5|ty
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

Digital Electronics and Computer Organization Lab
ENCS211

EXP. No. 11. - Arithmetic Elements

11.1 Objectives

¢+ To understand functions and applications of the ALU (arithmetic logic unit).
¢ To perform arithmetic and logic operations using the74181ALU IC.
++ To understand the construction and applications of parity generators.

++ To generate parity bit using XOR gates and parity generator IC.

11.2 Equipment Required
++ IT-3000 Basic Electricity Circuit Lab
% 1T-3003 Module.

Page | 157

11.3 Theory

11.3.1 ARITHMATIC LOGIC UNIT (ALU) CIRCUIT

The logic diagram of the ALU is shown in Figure 1:

Cin Cout
—_— —_—
A ‘,“
8 v Arithmetic
S0 & x 4
$1 logic unit 1 4
S2 MUX |yl F
S3 0
L4
Mode

Figure (1): logic diagram of the ALU.

It consists of two major parts: the arithmetic unit and the logic unit. The output, either

arithmetic or logic which is selected by the selection switches. Figure 2 shows the pin

assignment:
adT1 2 You
(¥
e L F1 p——— o
Inputs
— B3 ALU Cn+d pe Carry Out
——d 2
B
Bo
Carry In =k Cn
" 53 S2 S1 S0

Mode '_W_"’
Select

Figure (2): pin assignment.

Page | 158

The circuit has two 4-bit inputs A and B, as well as a “carry-in” (Cn) input. There is a
mode control input (M) and 4 function-select lines SO, S1, S2, S3 forming logic or
arithmetic operations.

Also, it has a 4-bit output (F3~F0); a “carry-out” or “Cn+4” output. The biggest
advantage of the design is its ability to perform arithmetic functions such as addition,
subtraction. multiplication; and logic functions such as AND, XOR functions.

The mode control input (M) and function-select lines (S0~S3) determines which

function it will perform.

11.3.2 BIT PARITY GENERATOR CIRCUIT

A bit parity generated by the bit parity generator, usually accompanies the data
transmission process. The bit parity provides as a reference point and allows us to compare
and check whether the transmission process and the data transmitted are correct or not.

There are two types of bit parity generators: The “Odd” bit parity generator will
generate “1” if the data contains an even number of “1” s. For example, the data
“10111011” has six “1s”. When the bit parity is added to the end of this data, the number of
“Is” in the data will become an “ODD” number, hence the name “Odd Parity Generator”.
On the other hand, an “Even” bit parity generator will add a “1” to data with odd number of
“1s” to make the total number of “1s” even. If the data already has an even number of “1” s
no bit parity is generated. Output Y of the” Even” bit parity generator shown in Figure 3
will be 0 if the inputs ABCDEFGH is equal to 10111011.

A
B
C ' B partty outpant
0 A

Input]D—ﬂ
o) ke
F
G
yo)

Figure (3): “Even” Bit Parity Generator Circuit.

Page | 159

11.4 Procedure

1141 ARITHMATIC LOGIC UNIT (ALU) CIRCUIT

A) Connect function-select lines S3~S0 to DIP2.7~2.4 respectively. Connect M toData Switch
SWO to select arithmetic and logic operation. When M= “0” inputB3~B0 is displayed at output.
When M= “1” arithmetic and logic function isperformed.

(MSB) (LSB)

in iu in iw ?2

(MSB) ;[F3 F2 F1 FO Cn+4
O—ss

16

u14

15 1
O—Y so
(LSB) A3 A2 A1 AD B3 B2 B1 BO M Cn

24 123 122 121 128 I27 |26 2s£ g
O00D0O0C0D0O 0D
(MSB) (LSB)(MSB) (LSB)

Figure (4): “Even” Bit Parity Generator Circuit.

B) Connect inputs A3~A0 to DIP1.3~1.0 and B3~B0 to DIP2.3~2.0; Connect Cn to Data
Switch SW1,; outputs F3~F0 to Logic Indicators L3~L0 and Cn+4 to L4.
C) Set M to “1” to perform the following arithmetic functions.
- Set Cn to “0” and ignore the previous carry.
When S35251S0=0000 perform the addition.
What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

F3F2F1F0= ; Cn+d=
What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?
F3F2F1F0= - Cn+4=

- Set Cn to “1” and add the previous carry.
When S35251S0=0000 perform the addition.
What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

Page | 160

F3F2F1F0=

; Cn+4=

What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?

F3F2F1F0=

; Cn+4=

- Set Cnto “0”. When S3S2S1S0=0001 perform the subtraction.
What is the output when A3A2A1A0=0000 and B3B2B1B0=1111?

F3F2F1F0=

; Cn+4=

What is the output when A3A2A1A0=1001 and B3B2B1B0=0100?

F3F2F1F0=

; Cn+4=

D) Again set M to “1” to perform the following arithmetic and logic functionsaccording to Table

1. Set inputs sequence A0~A3=A, BO~B3=B from DIP switches.

11.4.2 BIT PARITY GENERATOR CIRCUIT

Input selection M=H Output

53 52 51 50 Cn=L F3 F2 F1 F
0 0 l 0 A

0 0 1 1 ~A

0 1 0 0 B

0 1 0 1 ~B

0 l l 0 A&B

0 l l l AxB

1 0 0 0 A"B

1 0 0 1 Ax(~B)

1 0 1 0 (~A)xB

l 0 I I (~A)x(~B)

Table 1

A) Bit Parity Generator Construct with XOR Gates (Module IT-3003 block Half-Adder).

1) Insert connection clip according to Fig.ure 5 to construct the even bit paritygenerator

circuit of Figure 6.

Page | 161

U4 FO

Al
F1

ue D O”

U7
A
] |
S -1P=0
- F2 A2
"O ® F4
us }—=—O
c
O | Jo)——O
O 4
6) us - F6
O
E

Figure (5): Bit Parity Generator Circuit.

0o
EC

=

Figure (6): “Even” Bit Parity Generator Circuit.

2) Connect inputs A, B, C, D, E to DIP Switches 1.0~1.4 and output F6 to Logic

Indicator L1. Follow the input sequences in Table 2 and record the outputs.

Page | 162

Input

Output

F6

el bl et K £ =1 E=2 =2 =] k=1 E=ll=>

e b e e e E=2 =R E=A L d L

o =1 =10=0 =l B b=l R = =0

Table 2

B) Bit Parity Generator IC.

A10_°‘
0 8
: wl. TEvENE—Ovo

u13
F1O—L
G1O—m
H1O—2+
n O—4

S
?-:
T 0 a3 m o 0 @ »

£ 00D D) v1

Figure (6): Bit Parity Generator IC.

1) U13 on block Bit Parity Generator of module 1T-3003 is a bit parity generator Connect inputs
Al, B1, C1, D1, E]1, F1, G1, H1 and I1 to DIP Switches 1.0~1.7andDIP 2.0 respectively.
Connect outputs YO to LO; Y1 to L1. Follow the input sequences given in Table .3 and record

the outputs.

Page | 163

Yl

Y0
(even) | (odd)

A

B

Table 3

Page | 164

