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Abstract

The aim of this project is to enhance the simple computer code to become a machine that

uses multiple registers to store, load, and apply arithmetic operations. This new program can

make the use of multiple general purpose registers, and uses all these registers to perform the

necessary operations.
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Theory

The SIMPCOMP program uses an accumulator machine to perform the instruction cycle

of a given instruction. The main register used in an accumulator machine is the AC register,

hence the name. The accumulator register is implicitly used to perform instructions and to store

the result [1]. This register is a type of register for short-term storage for arithmetic and logic

data. The program goes through each state of the instruction cycle, and the operations are done

according to the given opcodes, and the data stored in certain memory cells.

The instruction cycle is composed of different states, each state doing the necessary

action to perform one full instruction. The cycle starts by fetching the instruction from IR into

MAR, all this step does is bring in an instruction to be executed. The cycle then goes into

decoding the instruction, meaning it breaks down the instruction into pieces to understand what

the instruction is. Then the operands are fetched to perform an arithmetic or logical operation,

then the result of this operation is stored into another operand. In the accumulator machine, the

instruction and the result is done and stored in the AC register. As for a multiple address

machine, the operands can be stored in multiple general purpose registers.
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Results

1)

a) How many instructions can this machine support?

= = 8 instructions2𝑂𝑝𝑐𝑜𝑑𝑒 𝐵𝑖𝑡𝑠 23

b) What is the range of the unsigned and signed constant numbers this machine

supports?

Unsigned: 0 → -12𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑏𝑖𝑡𝑠

0 → -128

Signed: → -1− 2𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑏𝑖𝑡𝑠−1 2𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑏𝑖𝑡𝑠−1

→ -1− 27 27

c) What is the length (in bits) of the following registers in this machine?

PC: 8

IR: 16

MAR: 8

MBR: 16

2) Simulate the following program by converting each instruction to corresponding

machine code. Then store the machine code in memory starting from location 10:

a) Check Appendix A for code.

4



This waveform shows the results of the code. Looking at the PC, it starts at value 10, and

after the first positive clock edge, the PC goes to MAR, making the value of MAR 10.

For the second positive edge, the PC is incremented by one, and the memory of MAR,

which stores 20, goes to the IR, hence the value of the IR being 20. In the third positive

edge, the instruction will be decoded based on the value of the op code and the mode bits.

The value of the instruction store in IR is 000 000 00 00010100, by decoding this

instruction, it is deduced that the opcode is LOAD and the addressing mode is direct

addressing, meaning the value stored in the source register in IR will go to the MAR,

therefore MAR is now 20 as shown in the waveform.

5



For this next part of the waveform, the positive clock edge signifies case 3 in the

program, this case fetches the operand depending on the mode bits of the given code.

Since the mode bits of this instruction are 00, signifying direct memory addressing, the

MBR will take its value from memory[MAR], MAR is now 20, and the memory of 20

holds the value 6, therefore the value fetched to the MBR is now 6.

The second clock edge shows the actual execution of the instruction, since the opcode of

the instruction is 000, and the mode bits are 00, then the executed code will be LOAD

using direct memory addressing. The memory[20] will go to the MBR, and after this code

execution, the value stored in MBR will go to the destination register. In this code, the

MBR goes to a dummy variable (Test) to check if the destination register is receiving the

correct variables, in this case 6. As seen in the above waveform, the Test variable is

receiving the correct data. After the execution state, the code resets the state value to 0, to

prepare for an incoming instruction.

The third clock edge shows how the incremented value of the PC goes to the MAR, and

so on.
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3) Assume A,B,C,D,E and Y are memory cells with addresses 30,31,32,33,34, and 35,

respectively. Given ,𝑌 = 𝐴+𝐵*𝐶−1
𝐷−𝐸

a) Write assembly code for implementing the above arithmetic expression?

LOAD R0, [31]

LOAD R1, [32]

MUL R0, R1

LOAD R1, [30]

ADD R1, R0

SUB R1, 1

LOAD R2, [33]

LOAD R3, [34]

SUB R2, R3

DIV R1, R2

STORE R1, [35]
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b) Convert the above assembly instructions into machine code and store them in the

memory starting at address 10.

Address Content

10 000 000 00 00011111

11 000 001 00 00100000

12 100 000 01 00000001

13 000 001 00 00011110

14 010 001 01 00000000

15 011 001 11 00000001

16 000 010 00 001 00000

17 000 011 00 00100010

18 011 010 01 00000010

19 101 001 01 00000010

20 001 001 00 00100011

c) Set PC=10 and simulate the above program. Verify that it works correctly and the

result stored at memory variable Y is correct. Attach simulation waveform and the

Verilog source file. Assume A, B, C, D and E have the values -1, 3, 5, 8, and 4,

respectively.

i) Check Appendix B for code.
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For the waveform above, the code is the same as previous in regards to how the memory

and registers function. In this code during execution, the result is stored in the destination

register, and is then moved to be stored in Y. By substituting the values into the equation, Y is

equal to 3.25, which is shown in the waveform.
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Conclusion

This project’s goal was to enhance the accumulator machine program to a multiple

register program. The new machine takes the instruction from the memory, performs an

operation and stores it in a general purpose register that can be easily accessed. The operands for

this machine could be stored in different registers, and any different operation can be done on

these operands.
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Appendices

Appendix A

module MonaHazar(Clock, PC, IR, MBR, MAR, Test);

input Clock;

output PC, IR, MBR, MAR;

reg [15:0] IR, MBR;

reg [7:0] PC, MAR;

reg [15:0] Memory [127:0];

reg [2:0] State;

reg [15:0] R[7:0];

output reg [15:0]Test;

parameter Load = 3'b000, Store = 3'b001, Add = 3'b010, Sub = 3'b011, Mul = 3'b100, Div =

3'b101; //Opcodes

parameter DMA = 3'b00, RD = 3'b01, RID = 3'b10, C = 3'b11; //Addressing mode bits

initial begin

//Program

Memory[10] = 16'h0014;

Memory[11] = 16'h0715;

Memory[12] = 16'h4201;

Memory[13] = 16'h0416;
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Memory[14] = 16'h6708;

Memory[15] = 16'h4101;

Memory[16] = 16'h2017;

//Data

Memory[20] = 16'd6;

Memory[21] = 16'd4;

Memory[22] = 16'd13;

Memory[23] = 16'd0;

Memory[24] = 16'd0;

PC = 10;

State = 0;

end

always @ (posedge Clock) begin

case (State)

0: begin //at the first positive edge, the value of the PC register is moved to MAR

MAR <= PC;

State = 1;

end

1: begin //at the second positive edge, the PC is incremented by one, and the

instruction stored in Memory of MAR, is moved to IR
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IR <= Memory[MAR];

PC <= PC + 1;

State = 2;

end

2: begin //decode the instruction

case (IR[15:13])

Load:case (IR[9:8])

DMA: MAR <= IR[7:0];

C: R[IR[12:10]] <= IR[7:0]; //constant is stored in R3, before being loaded

to R1

endcase

Add: case (IR[9:8])

RD: MAR <= IR[7:0];

RID: MAR <= R[IR[7:0]];

endcase
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Sub: case (IR[9:8])

C: R[IR[12:10]] <= IR[7:0]; // the constant is stored into R2

endcase

Store: case (IR[9:8])

DMA: MAR <= IR[7:0];

endcase

endcase

State = 3;

end

3: begin // Operand fetch;

case (IR[9:8])

DMA: MBR <= Memory[MAR]; // Direct memory addressing

RD: MBR <= R[IR[7:0]]; // Register direct addressing

RID: MBR <= Memory[R[IR[7:0]]]; // Register indirect addressing

C: MBR <= IR[7:0]; // Constant addressing

endcase

State = 4;

end
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4: begin //execute

case (IR[15:13])

Load: begin

case (IR[9:8])

DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin
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MBR <= ~MBR + 1;

end

end

C: begin

MBR <= IR[7:0];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

Test <= MBR; // should be R[IR[12:10]]

State = 0;

end

Store: begin

case (IR[9:8])

DMA: begin

Memory[MAR] <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;
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end

end

RD: begin

R[IR[12:10]] <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

Memory[R[IR[12:10]]] <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

State = 0;

end

Add: begin

case (IR[9:8])
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DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

C: begin

MBR <= IR[7:0];
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if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

R[IR[12:10]] <= R[IR[12:10]] + MBR;

State = 0;

end

Sub: begin

case (IR[9:8])

DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin
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MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

C: begin

MBR <= IR[7:0];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

R[IR[12:10]] <= R[IR[12:10]] - MBR;

State = 0;

end
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Mul: begin

case (IR[9:8])

DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

22



C: begin

MBR <= IR[7:0];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

R[IR[12:10]] <= R[IR[12:10]] * MBR;

State = 0;

end

Div: begin

case (IR[9:8])

DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

23



MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

C: begin

MBR <= IR[7:0];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

R[IR[12:10]] <= R[IR[12:10]] / MBR;

State = 0;
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end

endcase

end

endcase

end

endmodule
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Appendix B

module ArithmeticOperation(Clock, PC, IR, MBR, MAR, Y);

input Clock;

output PC, IR, MBR, MAR;

reg [15:0] IR, MBR;

reg [7:0] PC, MAR;

reg [15:0] Memory [127:0];

reg [2:0] State;

reg [15:0] R[3:0];

output reg [15:0]Y;

parameter Load = 3'b000, Store = 3'b001, Add = 3'b010, Sub = 3'b011, Mul = 3'b100, Div =

3'b101; //Opcodes

parameter DMA = 3'b00, RD = 3'b01, RID = 3'b10, C = 3'b11; //Addressing mode bits

initial begin

//Program

Memory[10] = 16'h001F; //LOAD R0, [31]

Memory[11] = 16'h0420;  //LOAD R1, [32]

Memory[12] = 16'h8101;  //MUL R0, R1

Memory[13] = 16'h041E;  //LOAD R1, [30]

Memory[14] = 16'h4500;  //ADD R1, R0
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Memory[15] = 16'h6701;  //SUB R1, 1

Memory[16] = 16'h0820;  //LOAD R2, [33]

Memory[17] = 16'h0C22;  //LOAD R3, [34]

Memory[18] = 16'h6902;  //SUB R2, R3

Memory[19] = 16'hA502;  //DIV R1, R2

Memory[20] = 16'h2423; //STORE R1, [35]

PC = 10;

State = 0;

//Data

Memory[30] = -16'd1; // value of A

Memory[31] = 16'd3;  // value of B

Memory[32] = 16'd5;  // value of C

Memory[33] = 16'd8;  // value of D

Memory[34] = 16'd4;  // value of E

end

always @ (posedge Clock) begin

case (State)
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0: begin

MAR <= PC;

State = 1;

end

1: begin

IR <= Memory[MAR];

PC <= PC + 1;

State = 2;

end

2: begin //decode the instruction

case (IR[15:13])

Load:case (IR[9:8])

DMA: MAR <= IR[7:0];

C: R[IR[12:10]] <= IR[7:0]; //constant is stored in R3, before being loaded

to R1
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endcase

Add: case (IR[9:8])

RD: MAR <= IR[7:0];

RID: MAR <= R[IR[7:0]];

endcase

Sub: case (IR[9:8])

C: R[IR[12:10]] <= IR[7:0]; // the constant is stored into R2

endcase

Store: case (IR[9:8])

DMA: MAR <= IR[7:0];

endcase

endcase

State = 3;

end
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3: begin // Operand fetch;

case (IR[9:8])

DMA: MBR <= Memory[MAR]; // Direct memory addressing

RD: MBR <= R[IR[7:0]]; // Register direct addressing

RID: MBR <= Memory[R[IR[7:0]]]; // Register indirect addressing

C: MBR <= IR[7:0]; // Constant addressing

endcase

State = 4;

end

4: begin //execute

case (IR[15:13])

Load: begin

case (IR[9:8])

DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end
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end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

C: begin

MBR <= IR[7:0];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase
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R[IR[12:10]] <= MBR;

State = 0;

end

Store: begin

case (IR[9:8])

DMA: begin

Memory[MAR] <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

R[IR[12:10]] <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

Memory[R[IR[12:10]]] <= R[IR[7:0]];
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if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

State = 0;

end

Add: begin

case (IR[9:8])

DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end
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end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

C: begin

MBR <= IR[7:0];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

R[IR[12:10]] <= R[IR[12:10]] + MBR;

State = 0;

end

Sub: begin

case (IR[9:8])
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DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

C: begin

MBR <= IR[7:0];
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if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

R[IR[12:10]] <= R[IR[12:10]] - MBR;

State = 0;

end

Mul: begin

case (IR[9:8])

DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin
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MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

C: begin

MBR <= IR[7:0];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

R[IR[12:10]] <= R[IR[12:10]] * MBR;

State = 0;

end

Div: begin
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case (IR[9:8])

DMA: begin

MBR <= Memory[MAR];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RD: begin

MBR <= R[IR[7:0]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

RID: begin

MBR <= Memory[R[IR[7:0]]];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

C: begin
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MBR <= IR[7:0];

if (MBR[15] == 1) begin

MBR <= ~MBR + 1;

end

end

endcase

R[IR[12:10]] <= R[IR[12:10]] / MBR;

State = 0;

end

endcase

Y <= R[IR[12:10]];

end

endcase

end

endmodule
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