

Birzeit University Mathematics Department First Semester 2022/2023 Math234-First Exam

Time: 70 minutes December 17, 2022

Name:

Number:....

Sections	Instructor Name	
(1) and (5)	Dr. Ala Talahmeh	
(2)	Dr. Alaeddin Elayyan	
(3) and (4)	Dr. Hasan Yousef	
(6)	Dr. Mohammad Saleh	

10X2:5

Exercise#1 [25 marks]. Answer the following statements as True or False.

- 2. (..... B = O then either A or B is a zero matrix.

- 9. (.....) If A is an $n \times n$ nonsingular matrix, then AA^T is also nonsingular.
- 10. (.....) Let A and B be any 3×3 matrices. If det(A) = 0 or det(B) = 0, then det(A+B) = 0.

Exercise#2 [45 marks]. Circle the correct answer.

- (1) A linear system of two equations in three unknowns has
 - (a) exactly one solution
 - (b) infinitely many solutions
 - (c) no solution
 - (d) either (b) or (c)
- (2) A matrix A that can be obtained from an identity matrix by performing a single elementary row operation is
 - (a) equivalent to a zero matrix
 - (b) in row echelon form
 - (c) an elementary matrix
 - (d) in reduced row echelon form
- (3) The value of α that make the system with augmented matrix $\begin{bmatrix} 4\alpha 1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 4\alpha 1 & 0 \end{bmatrix}$ has a non-trivial solution is:
 - (a) $\frac{1}{2}$
 - $\frac{1}{4}$
 - (c) $\frac{3}{4}$
 - (d) 1
- (4) A matrix that is both symmetric and upper triangular must be a
 - (a) diagonal matrix
 - (b) non-diagonal but symmetric
 - (c) both (a) and (b)
 - (d) none of the above

- (5) A homogeneous linear system in $\bf n$ unknowns whose corresponding augmented matrix has a reduced row echelon form with $\bf r$ leading 1's has
 - (a) r-n free variables
 - (b) n-r free variables
 - (c) r free variables
 - (d) cannot be determined
- (6) Which of the following matrices is in reduced row echelon form?
 - $\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - (c) both (a) and (b)
 - (d) none
- (7) If A is an $n \times n$ matrix, then the linear system Ax = 4x has a unique solution if and only if
 - (a) A is an invertible matrix.
 - (b) A + 4I is an invertible matrix.
 - (c) A-4I is an invertible matrix.
 - (d) 4A is an invertible matrix.
- (8) The value of m that make the system with augmented matrix $\begin{bmatrix} -2 & 2 & m \\ 2 & 1 & 7 \\ 1 & -2 & -4 \end{bmatrix}$ has a unique solution is:
 - (a) 2
 - (b) -2
 - (c) -10
 - (d) 10

- (9) For which value of x, will the matrix $\begin{bmatrix} 8 & x & 0 \\ 4 & 0 & 2 \\ 12 & 6 & 0 \end{bmatrix}$ become singular?
 - (a) 4
 - (b) 6
 - (c) 3
 - (d) 12
- (10) Let $A = \begin{bmatrix} 1 & 2 & 4 & 6 \\ 5 & 0 & 3 & 1 \\ 4 & 0 & 2 & 6 \\ 0 & 3 & 8 & 1 \end{bmatrix}$. The entry (4,1) of adj(A) is
 - (a) 32
 - (b) -32
 - (c) -6
 - (d) 6
- (11) If $\begin{vmatrix} x & y \\ z & w \end{vmatrix} = 4$, then $\begin{vmatrix} 3z & 3w \\ 3z 2x & 3w 2y \end{vmatrix} =$
 - (a) 24
 - (b) -24
 - (c) 12
 - (d) -12
- (12) If A is a 3×3 matrix, then one of the following statements is **true**:
 - (a) $\det(-A) = -\det(A)$
 - **(b)** $\det(A) = 0$
 - (c) det(A + I) = 1 + det(A)
 - (d) $\det(2A) = 2\det(A)$

- (13) If $A^2 A + I = O$, then $A^{-1} =$
 - (a) A^{-2}
 - (b) A + I
 - (c) I-A
 - (d) A-I
- (14) If A is a skew-symmetric matrix, then
 - (a) A is nonsingular
 - (b) A is singular
 - (c) A is symmetric
 - (d) all entries on the main diagonal are zeros.
- (15) Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$. Then an **LU-factorization** of the matrix A is
 - (a) $L = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -2 & -\frac{2}{3} & 1 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$
 - **(b)** $L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & \frac{2}{3} & 1 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$
 - (c) $L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & \frac{2}{3} & 1 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{bmatrix}$
 - (d) None of the above

Birzeit University Mathematics Department First Semester 2022/2023 Math234-First Exam Time: 70 minutes December 17, 2022

Name:.....

Number:....

Sections	Instructor Name
(1) and (5)	Dr. Ala Talahmeh
(2)	Dr. Alaeddin Elayyan
(3) and (4)	Dr. Hasan Yousef
(6)	Dr. Mohammad Saleh

Exercise#1 [25 marks]. Answer the following statements as True or False.

2. (..... If $A^2 = I$ then either A = I or A = -I.

5. (.....) If A is a 3×3 matrix with $a_1 + a_2 + a_3 = 0$, then A is singular.

8. (.... F....) If $A^3 - I = O$, then A is singular.

10. (.....) Let A and B be any 3×3 matrices. If det(A) = 0 or det(B) = 0, then det(AB) = 0.

Exercise#2 [45 marks]. Circle the correct answer.

- (1) A consistent linear system of two equations in three unknowns has
 - (a) exactly one solution
 - (b) infinitely many solutions
 - (c) no solution
 - (d) either (a) or (b)
- (2) A matrix A that can be obtained from an identity matrix by performing a single elementary row operation is
 - (a) equivalent to a zero matrix
 - (b) in row echelon form
 - (c) an elementary matrix
 - (d) in reduced row echelon form
- (3) The value of α that make the system with augmented matrix $\begin{bmatrix} 2\alpha 1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 2\alpha 1 & 0 \end{bmatrix}$ has a non-trivial solution is:
 - (a) $\frac{1}{2}$
 - (b) $\frac{1}{4}$
 - (c) $\frac{3}{4}$
 - (d) 1
- (4) A matrix that is both symmetric and upper triangular must be a
 - (a) diagonal matrix
 - (b) non-diagonal but symmetric
 - (c) both (a) and (b)
 - (d) none of the above

- (5) A homogeneous linear system in \mathbf{r} unknowns whose corresponding augmented matrix has a reduced row echelon form with \mathbf{n} leading 1's has
 - (a) r-n free variables
 - (b) n-r free variables
 - (c) r free variables
 - (d) cannot be determined
- (6) Which of the following matrices is in reduced row echelon form?

(a)

$$\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

- c both (a) and (b)
- (d) none
- (7) If A is an $n \times n$ matrix, then the linear system Ax = -4x has a unique solution if and only if
 - (a) A is an invertible matrix.
 - (b) A + 4I is an invertible matrix.
 - (c) A 4I is an invertible matrix.
 - (d) 4A is an invertible matrix.
- (8) The value of m that make the system with augmented matrix $\begin{bmatrix} 2 & 2 & m \\ 2 & 1 & 7 \\ 1 & -2 & -4 \end{bmatrix}$ has a unique solution is:
 - (a) 2
 - (b) -2
 - (c) -10
 - (d) 10

- (9) For which value of x, will the matrix $\begin{bmatrix} 8 & x & 1 \\ 4 & 0 & 2 \\ 12 & 6 & 0 \end{bmatrix}$ become singular?
 - (a) 4
 - (b) 6
 - **©** 3
 - (d) 12
- (10) Let $A = \begin{bmatrix} 1 & 2 & 4 & 6 \\ 5 & 0 & 3 & 1 \\ 4 & 0 & 2 & 6 \\ 0 & 3 & 8 & 1 \end{bmatrix}$. The entry (1,4) of adj(A) is
 - (a) 32
 - (b) -32
 - (c) -6
 - (d) 6
- (11) If $\begin{vmatrix} x & y \\ z & w \end{vmatrix} = 4$, then $\begin{vmatrix} 3z 2x & 3w 2y \\ 3z & 3w \end{vmatrix} =$
 - (a) 24
 - (b) -24
 - (c) 12
 - (d) -12
- (12) If A is a 4×4 matrix, then one of the following statements is **true**:
 - (a) $\det(2A) = 2\det(A)$
 - **(b)** $\det(A) = 0$
 - (c) $\det(A + I) = 1 + \det(A)$

- (13) If $A^2 + A I = O$, then $A^{-1} =$
 - (a) A^{-2}
 - (b) A+I
 - (c) I A
 - (d) A-I
- (14) If A is a skew-symmetric matrix, then
 - (a) $a_{ii} = 0$, for all i
 - (b) A is singular
 - (c) A is symmetric
 - (d) A is nonsingular
- (15) Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$. Then an **LU-factorization** of the matrix A is
 - (a) $L = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -2 & -\frac{2}{3} & 1 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$
 - **b** $L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & \frac{2}{3} & 1 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$
 - (c) $L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & \frac{2}{3} & 1 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{bmatrix}$
 - (d) None of the above

Exercise#3 [10 marks]. Use the Gauss reduction method to solve the system:

$$x_1 - x_2 + 3x_3 + 2x_4 = 1$$

$$-x_1 + x_2 - 2x_3 + x_4 = -2$$

$$2x_1 - 2x_2 + 7x_3 + 7x_4 = 1$$

$$\begin{bmatrix} 1 & -1 & 3 & 2 & 1 \\ -1 & 1 & -2 & 1 & -2 \\ 2 & -2 & 7 & 7 & 1 \end{bmatrix}$$

Let
$$X_2=t$$
, $X_4=r$ be free variables.
 $X_3=-1+3r$

$$X_1 = 1 + t - 3(-1 + 3r) + 2r$$

 $\Rightarrow X_1 = 4 + t + 7r$

Solution =
$${(4+t+7r_1t_1-1+3r_1r_1)^T; t \in \mathbb{R}^1}$$
.

Exercise#4[10 marks]. Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$$
.

(a) Find det(A).

$$(2)^{1/3}$$
 def(A) = $\frac{1}{2} \frac{3}{3} \frac{4}{1} + \frac{1}{2} \frac{3}{2} \frac{3}{1}$
= $\frac{9}{8} + \frac{6}{6} - \frac{6}{6} = \frac{1}{3}$

(b) Find adj(A).

adj
$$(A) = \begin{bmatrix} 13 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -10 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 11 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 12 & 2 \\ 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} -12 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 11 & 1 \\ 3 & 3 \end{bmatrix}$$

$$=\begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & -2 \\ -3 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 1 & -1 \\ 0 & -2 & 3 \end{bmatrix}$$

(c) Use (a) and (b) to find A^{-1} .

$$A' = \frac{1}{\det(A)} \operatorname{adj}(A) = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 1 & -1 \\ 0 & -2 & 3 \end{bmatrix}$$

	2500	20 02	2
Exercise#5	15	marks	١.
LACICIDET	10	TITCLE IL	ι.

(a) Let A be a 5×3 matrix. Suppose that $b = a_2 - a_3 = a_1 + 2a_2$. Show that the system Ax = b has infinitely many solutions.

Pf. since b= a2-a3, then (0,1,-1) is a solution to Axab

SproAlso, Since b= a, +2az, then (1,2,0) T is another solution to Ax=b.

Since the System Ax=b has more than one solution, it has infinite solutions. I

(b) Let A and B be an $n \times n$ matrices. If A, B and AB are symmetric, prove that AB = BA.

Pf. AB = (AB)T (Since AB is Symmetric)

= BTAT

= BA (Since A and B are Symmetric).

(c) Let A be an $n \times n$ matrix and let u and v be vectors in \mathbb{R}^n . Show that if Au = Av and $u \neq v$, then A must be singular.

Pf. Suppose that Au=Av, u+v. Then A(u-v)=0,u+v

Ests = the homogeneous system Ax=0 has
anentivial solutions

) A is Singular. [

[OR] Suppose by contradiction that A is nonsingular, then $Au = AV \Rightarrow A'Au = A'AV \Rightarrow Iu = IV \Rightarrow u = V, a contradiction.$

OR Since Au=Av, u+v, then the system Ax=b has two different solutions => A must be singular.