

Birzeit University Mathematics Department First Semester 2022/2023 Math234-Second Exam

Time: 90 minutes January 28, 2023

Name				
Nama	•			
LVallic	•	 	 	

Number:....

Sections	Instructor Name
(1) and (5)	Dr. Ala Talahmeh
(2)	Dr. Alaeddin Elayyan
(3) and (4)	Dr. Hasan Yousef
(6)	Dr. Mohammad Saleh

Exercise#1 [30 marks]. Answer the following statements as True or False.

- 1. (.....F....) For a matrix A, the row space of A^T is the same as null space of A.

- 4. (..... A finite set that contains zero is linearly independent.
- 5. (.....) If A is a 3×3 matrix with $a_2 = a_3$, then $N(A) = \{0\}$.
- 6. (\dots, \dots) For a matrix A, the row space and null space have the same dimensions.

- 12. (\dots, \overline{x}) The set $\{1, \cos 2x, \sin^2 x\}$ is linearly independent in $C([0, \pi])$.
- 13. (......] The set of all 2×2 matrices with the standard matrix addition and scalar multiplication is a vector space.
- 14. (......) There is a set of four vectors that span \mathbb{R}^4 .

Exercise#2 [30 marks]. Circle the correct answer.

- (1) If W is a subspace of a finite-dimensional vector space V, then
 - (a) $\dim(W) = \dim(V)$
 - (b) $\dim(W) \ge \dim(V)$
 - (c) dim $(W) \leq$ dim(V)
 - (d) None of the above
- (2) The dimension of the subspace $S = \{A \in \mathbb{R}^{2 \times 2} : A^T = -A\}$ is equal to
 - (a) 1
 - **(b)** 2
 - **(c)** 3
 - (d) 0
- (3) If A is a 7×6 matrix such that Ax = 0 has only the trivial solution, then rank(A) =
 - (a) 6
 - **(b)** 0
 - (c) 7
 - (d) 1
- (4) Which of the following is (are) true?
 - (a) If S is a subspace of a vector space V, then $0 \in S$.
 - (b) The set of vectors $\{v, kv\}$ is linearly independent for every scalar k.
 - (c) If $f_1, f_2,, f_n \in C^{n-1}([a, b])$ and $W(f_1, f_2,, f_n)(x) = 0$ for all $x \in [a, b]$, then $f_1, f_2,, f_n$ are linearly dependent.
 - (d) All are true
- (5) Given that $S = \{1, 1 + x + x^2, q(x)\}$ is a basis for P_3 . Which of the following is a possible value of q(x)?
 - (a) 0
 - **(b)** 1 + x
 - (c) -1
 - (d) $2 + x + x^2$

- (6) The **dimension** of the vector space $C^n([a, b])$ is
 - (a) n-1
 - **(b)** *n*
 - (c) infinite
 - (d) undefined
- (7) If A is a 5×6 matrix, then
 - (a) $rank(A) \geq 5$
 - **(b)** rank(A) = 5
 - \bigcirc rank $(A) \leq 5$
 - (d) $rank(A) \leq 6$
- (8) The **transition matrix** from the ordered basis $\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \end{pmatrix} \right\}$ to the standard basis $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ is
 - (a) $\begin{bmatrix} 1 & -2 \\ 3 & -5 \end{bmatrix}$
 - (b) $\begin{bmatrix} -5 & 2 \\ -3 & 1 \end{bmatrix}$
 - $\bigcirc \left[\begin{array}{cc} 1 & 3 \\ -2 & -5 \end{array} \right]$
 - (d) $\begin{bmatrix} -5 & -3 \\ 2 & 1 \end{bmatrix}$
- (9) The Wronskian of $1, e^x, e^{2x}$ is equal to
 - (a) $4e^{2x}$
 - (b) $3e^{2x}$
 - (c) $2e^{3x}$
 - (d) $3e^{3x}$
- (10) Which of the following does not span \mathbb{R}^3 ?
 - (a) $\{(2,2,2),(0,0,3),(0,1,1)\}$
 - **(b)** $\{(2,-1,3),(4,1,2),(8,-1,8)\}$
 - (c) Neither (a) nor (b) span \mathbb{R}^3
 - (d) Both (a) and (b) span \mathbb{R}^3

(11) Which of the following is a subspace of \mathbb{R}^3 ?

- (a) $S = \{(0, a, a^2)^T : a \in \mathbb{R}\}$
- (b) $S = \{(a+2, a, 0)^T : a \in \mathbb{R}\}$
- (c) $S = \{(a, b, 2)^T : a, b \in \mathbb{R}\}$
- (d) $S = \{(a, b, a 2b)^T : a, b \in \mathbb{R}\}$

(12) Which of the following is a subspace of P_4 ?

- (a) All polynomials $ax^3 + bx^2 + cx + d$ for which a, b, c, d are rational numbers.
- (b) All polynomials $ax^3 + bx^2 + cx + d$ for which a, b, c, d are irrational numbers.
- (c) All polynomials $ax^3 + bx^2 + cx + d$ for which a + b + c + d = 0.
- (d) All polynomials $ax^3 + bx^2 + cx + d$ for which a + b + c + d = 1.

(13) Which of the following sets in \mathbb{R}^3 is linearly dependent?

- (a) $\{(1,4,6),(1,-4,0),(4,5,2),(1,3,-5)\}$
- (b) $\{(3,2,4),(2,4,3),(0,1,3)\}$
- (c) $\{(0,2,0),(2,3,3),(4,2,4)\}$
- (d) $\{(1,4,-2),(3,0,0)\}$

(14) Let $S = \{(x+y, x+y, x+2y)^T : x, y \in \mathbb{R}\}$. Then $\dim(S) =$

- (a) 1
- **(b)** 2
- (c) 3
- (d) 0

(15) Let A be a 6×6 matrix with all entries are 1, then nullity(A) =

- (a) 1
- **(b)** 2
- (c) 4
- **d** 5

Exercise#3 [15 marks]. Let

$$W = \left\{ p(x) \in P_3 : p''(x) + \int_0^1 p(x) dx = 0 \right\}.$$

(a) Show that W is a subspace of P_3 .

(a) show that W is a subspace of 13.

(i) Let
$$p(x) = 0$$
. Then $p''(x) + \int_{a}^{b} p(x) dx = 0 \Rightarrow W \neq \Phi$.

(3) Let
$$P, q \in W$$
. Then,
 $(P+q)''(x) + \int_{0}^{1} (P+q)(x) dx = (P''(x) + \int_{0}^{1} P(x) dx) + (Q''(x) + \int_{0}^{1} Q(x) dx)$

$$= 0 + 0 = 0 (P, q \in W).$$

(3 (iii) Let
$$x \in \mathbb{R}$$
 and $P \in \mathbb{W}$. Then,
$$(\alpha P)''(x) + \int [\alpha P)(x) dx = \alpha \left(P''(x) + \int_{0}^{1} P(x) dx \right) = \alpha \cdot 0 = 0 \Rightarrow \alpha P \in \mathbb{W}.$$

(b) Find a basis and dimension for W.

$$p(x) \in W \Rightarrow 2\alpha + \int (\alpha x^2 + bx + c) dx = 0$$

$$\Rightarrow 2a + \left(\frac{ax^3 + bx^2 + cx}{3} + \frac{bx^2}{2} + cx\right) = 0$$

$$\frac{1}{2} \cdot M = \begin{cases} p(x) \in P_3 : p(x) = ax^2 + bx - \frac{7}{3}a - \frac{b}{2} \end{cases}$$

$$= \{ p(x) \in P_3 : p(x) = \alpha(x^2 - \frac{\pi}{3}) + b(x - \frac{1}{2}) \}$$

= Span
$$\{ x^2 - \frac{3}{3}, x - \frac{1}{2} \}$$
 and $\{ x^2 - \frac{1}{3}, x - \frac{1}{2} \}$ lin.
indep.
 $\{ x^2 - \frac{1}{3}, x - \frac{1}{2} \}$ is a basis for W and dim $W = 2$

Exercise#4 [12 marks]. Let E = [2x - 1, 2x + 1] and F = [2 + x, 1 - x] be two ordered bases for P_2 .

(a) Find the **transition matrix** from E to the standard basis $\{1, x\}$.

$$\begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix}$$

(b) Find the **transition matrix** from the standard basis $\{1, x\}$ to F.

$$\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1/3 & 1/3 \\ 1/3 & -2/3 \end{bmatrix}$$

(c) Find the transition matrix from E to F.

$$S_{E\rightarrow F} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix}$$
$$= -\frac{1}{3} \begin{bmatrix} -1 & -3 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 1/3 & 1 \\ -5/3 & -1 \end{bmatrix}$$

(d) If $[p(x)]_E = (2,1)^T$, use part (c) to find $[p(x)]_F$.

$$\begin{bmatrix}
P(x) \end{bmatrix}_{F} = S_{E \to F} \begin{bmatrix} P(x) \end{bmatrix}_{E} \\
= \begin{bmatrix} \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -\frac{5}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -\frac{13}{3} \end{bmatrix} = \begin{bmatrix} 5/3 \\ -\frac{13}{3} \end{bmatrix}$$

Exercise#5 [18 marks]. Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 3 & 1 \\ 2 & 4 & 5 & 5 & 4 \\ 3 & 6 & 7 & 8 & 4 \end{bmatrix}$$
.

(a) Find the **row echelon form** of A.

$$\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
0 & 0 & 1 & -1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
0 & 0 & 1 & -1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & 2 & 3 & 1 \\
0 & 0 & 0 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & 2 & 3 & 1 \\
0 & 0 & 0 & -1
\end{bmatrix}$$

(b) Find a basis for the row space of A.

(c) Find a basis for the **column space** of A.

$$\left(\frac{1}{2}\right),\left(\frac{1}{3}\right),\left(\frac{1}{4}\right)^{2}$$

(d) Find rank(A) and nullity(A).

(e) Find a basis for the **null space** of A.

Birzeit University Mathematics Department First Semester 2022/2023 Math234-Second Exam Time: 90 minutes

Time: 90 minutes January 28, 2023

T T	
Name:	

Number:....

Sections	Instructor Name
(1) and (5)	Dr. Ala Talahmeh
(2)	Dr. Alaeddin Elayyan
(3) and (4)	Dr. Hasan Yousef
(6)	Dr. Mohammad Saleh

Exercise#1 [30 marks]. Answer the following statements as True or False.

- 4. (......) A finite set that contains zero is linearly dependent.

- 7. (......) Every linearly independent set of three vectors in \mathbb{R}^3 is a basis for \mathbb{R}^3 .
- 8. (.....) If A and B are $n \times n$ matrices that have the same row space, then A and B have the same column space.
- 9. (......) If A is a 3×5 matrix, then the rank of A^T is at most 3.

- 12. (\ldots, \ldots) The set $\{1, \cos 2x, \sin^2 x\}$ is linearly dependent in $C([0, \pi])$.
- 13. (.....F....) The set of all 2×2 invertible matrices with the standard matrix addition and scalar multiplication is a vector space.
- 14. (...... There is a set of four vectors that span \mathbb{R}^5 .

Exercise#2[30 marks]. Circle the correct answer.

- (1) If V is a subspace of a finite-dimensional vector space W, then
 - (a) $\dim(W) = \dim(V)$
 - (b) $\dim(W) \ge \dim(V)$
 - (c) $\dim(W) \leq \dim(V)$
 - (d) None of the above
- (2) The dimension of the subspace $S = \{A \in \mathbb{R}^{2 \times 2} : A^T = A\}$ is equal to
 - (a) 1
 - (b) 2
 - **(c)** 3
 - (d) 0
- (3) If A is a 6×7 matrix with rank(A) = 6, then nullity(A) = 6
 - (a) 6
 - (b) 0
 - (c) 7
 - (d) 1
- (4) Which of the following is (are) true?
 - (a) If S is a subspace of a vector space V, then $0 \in S$.
 - (b) The set of vectors $\{v, kv\}$ is linearly dependent for every scalar k.
 - (c) If $f_1, f_2,, f_n \in C^{n-1}([a, b])$ and $f_1, f_2,, f_n$ are linearly dependent, then $W(f_1, f_2,, f_n)(x) = 0$ for all $x \in [a, b]$.
 - (d) All are true
- (5) Given that $S = \{1, 1+x, q(x)\}$ is a basis for P_3 . Which of the following is a possible value of q(x)?
 - (a) 0
 - (b) 1 + x
 - (c) -1
 - (d) $2 + x + x^2$

- (6) The dimension of the vector space P_n is
 - (a) n-1
 - (b) n
 - (c) infinite
 - (d) undefined
- (7) If A is a 3×5 matrix, then
 - (a) $rank(A) \geq 3$
 - (b) $\operatorname{rank}(A) \leq 3$
 - (c) rank(A) = 3
 - (d) rank(A) = 5
- (8) The **transition matrix** from the standard basis $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ to the ordered basis $\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \end{pmatrix} \right\}$ to is
 - (a) $\begin{bmatrix} 1 & -2 \\ 3 & -5 \end{bmatrix}$
 - (b) $\begin{bmatrix} -5 & 2 \\ -3 & 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 3 \\ -2 & -5 \end{bmatrix}$
- (9) The Wronskian of $1, x, e^{2x}$ is equal to
 - (a) $4e^{2x}$
 - (b) $3e^{2x}$
 - (c) $2e^{3x}$
 - (d) $3e^{3x}$
- (10) Which of the following does not span \mathbb{R}^3 ?
 - (a) $\{(2,2,2),(0,0,3),(0,0,1)\}$
 - **(b)** $\{(2,-1,3),(4,1,2),(8,-1,8)\}$
 - \bigcirc Neither (a) nor (b) span \mathbb{R}^3
 - (d) Both (a) and (b) span \mathbb{R}^3

(11) Which of the following is a subspace of \mathbb{R}^3 ?

(a)
$$S = \{(0, a, a^2)^T : a \in \mathbb{R}\}$$

(b)
$$S = \{(a+2, a, 0)^T : a \in \mathbb{R}\}$$

(c)
$$S = \{(a, b, 0)^T : a, b \in \mathbb{R}\}$$

(d)
$$S = \{(a, b, ab)^T : a, b \in \mathbb{R}\}$$

(12) Which of the following is a subspace of P_4 ?

- (a) All polynomials $ax^3 + bx^2 + cx + d$ for which a, b, c, d are rational numbers.
- (b) All polynomials $ax^3 + bx^2 + cx + d$ for which a, b, c, d are real numbers.
- (c) All polynomials $x^3 + bx^2 + cx + d$ for which b + c + d = 0.
- (d) All polynomials $ax^3 + bx^2 + cx + d$ for which a + b + c + d = 1.

(13) Which of the following sets in \mathbb{R}^3 is linearly dependent?

(a)
$$\{(1,4,6),(1,-4,0),(4,5,2)\}$$

$$\{(3,2,4),(2,4,3),(0,1,3),(1,-2,1)\}$$

(c)
$$\{(0,2,0),(2,3,3),(4,2,4)\}$$

(d)
$$\{(1,4,-2),(3,0,0)\}$$

(14) Let $S = \{(x+y, x+y, x+y)^T : x, y \in \mathbb{R}\}$. Then dim(S) =

- (a) 1
- (b) 2
- (c) 3
- (d) 0

(15) Let A be a 6×6 matrix with all entries are 1, then rank(A) =

- (a) 1
- (b) 2
- (c) 4
- (d) 5

Exercise#3 [15 marks]. Let

$$W = \left\{ p(x) \in P_3 : p'(1) + \int_0^1 p(x) dx = 0 \right\}.$$

(a) Show that W is a subspace of P_3 .

(a) Show that W is a subspace of
$$P_3$$
.

(i) Let $p(x) = 0$. Then $p'(1) + \int_0^1 p(x) dx = 0 \implies W \neq 0$.

(3 (ii) Let P, q & W. Then,

$$(p+q)'(1) + \int_{0}^{1} (p+q)(x) dx = (p|(1) + \int_{0}^{1} p(x) dx) + (2|(1) + \int_{0}^{1} q(x) dx)$$

= 0 +0 = 0 (:: p,qeW

: P+f EW.

$$(\alpha P)(1) + \int_{0}^{1} (\alpha P)(x) dx = \alpha \left(P'(1) + \int_{0}^{1} P(x) dx \right) = \alpha \cdot 0 = 0$$

$$\Rightarrow \alpha P \in W_{0}, T$$

(b) Find a basis and dimension for W.

$$p(x) \in W \implies 2a+b+\int_{0}^{1} (ax^{2}+bx+c)dx = 0$$

$$2a+b+\left(\frac{ax^{3}}{3}+\frac{bx^{2}}{2}+cx\right)\Big|_{0}^{1}=0$$

Exercise#4 [12 marks]. Let E = [2+x, 1-x] and F = [2x-1, 2x+1] be two ordered bases for P_2 .

(a) Find the **transition matrix** from E to the standard basis $\{1, x\}$.

$$\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$

(b) Find the **transition matrix** from the standard basis $\{1, x\}$ to F.

$$\begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix}^{-1} = -\frac{1}{4} \begin{bmatrix} 2 & -1 \\ -2 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} -1/2 & 1/4 \\ 1/2 & 1/4 \end{bmatrix}$$

(c) Find the transition matrix from E to F.

$$S_{C \to F} = \begin{bmatrix} -1 & 1 & 1 & -1 \\ 2 & 2 & 1 \end{bmatrix} = -\frac{1}{4} \begin{bmatrix} 2 & -1 & 2 & 1 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= -\frac{1}{4} \begin{bmatrix} 3 & 3 & 3 \\ -5 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -3/4 & -3/4 \\ 5/4 & 1/4 \end{bmatrix}$$

(d) If $[p(x)]_E = (1,2)^T$, use part (c) to find $[p(x)]_F$.

$$\begin{bmatrix}
3 & \begin{bmatrix} p(x) \end{bmatrix}_F = S_{F \to F} & \begin{bmatrix} p(x) \end{bmatrix}_E \\
= -\frac{1}{4} & \begin{bmatrix} 3 & 3 \\ -S & -1 \end{bmatrix} & \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\
= -\frac{1}{4} & \begin{bmatrix} 9 \\ -7 \end{bmatrix} = \begin{bmatrix} -\frac{9}{4} & 14 \\ \frac{7}{4} & 14 \end{bmatrix}$$

Exercise#5 [18 marks]. Let
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 2 & 6 & 7 & 3 & 2 \\ 3 & 9 & 10 & 5 & 4 \end{bmatrix}$$
.

(a) Find the **row echelon form** of A.

$$\begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 0 & 0 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{9} \begin{bmatrix} 0 & 3 & 3 & 2 & 1 \\ 0 & 0 & 1 & -1 & 0 \end{bmatrix}$$

(b) Find a basis for the row space of A.

(c) Find a basis for the column space of A.

(d) Find rank(A) and nullity(A).

(e) Find a basis for the **null space** of A.

$$\begin{array}{l} X_{1}, X_{3}, X_{5} \\ X_{5} = 0 \\ X$$