
COMP2421
Sorting Algorithms Report

Computer Science Department
Mona Dweikat - 1200277

Dr. Radi Jarrar

23/2/2023

Table of Content

1. Cycle Sort 3
1.1: Description 3
1.2: Algorithm 3
1.3: Time-Complexity 4

Table 1.3.1 4
1.4: Space Complexity 4
1.5: Stability 5
1.6: Memory Allocation 5
1.7: Example 5

2. Cocktail Sort 7
2.1: Description 7
2.2: Algorithm 7
2.3: Time-Complexity 8

Table 2.3.1 8
2.4: Space Complexity 8
2.5: Stability 8
2.6: Memory Allocation 9
2.7: Example 9

3. Strand Sort 12
3.1: Description 12
3.2: Algorithm 12
3.3: Time-Complexity 13

Table 3.3.1 13
3.4: Space Complexity 13
3.5: Stability 13
3.6: Memory Allocation 14
3.7: Example 16

4. Bucket Sort 17
4.1: Description 17
4.2: Algorithm 17
4.3: Time-Complexity 18

Table 4.3.1 18
4.4: Space Complexity 18
4.5: Stability 19
4.6: Memory Allocation 19

1

4.7: Example 19
Table 4.7.1 20
Table 4.7.2 21

5. Comb Sort 23
5.1: Description 23
5.2: Algorithm 23
5.3: Time-Complexity 24

Table 5.3.1 24
5.4: Space Complexity 24
5.5: Stability 25
5.6: Memory Allocation 25
5.7: Example 25

Summary 28
Table 6.1 28

References 30

2

1. Cycle Sort

1.1: Description

Cycle sort is a comparison, unstable, in place sorting algorithm. The

algorithm works to sort an array by starting at the first index and placing it at the

correct index. The correct index is found by comparing the current element to all

other elements, and counting the number of elements less than the current

element, then adding the current index to that count. The algorithm goes through

all elements of an array and cycles each element to its correct index. Each element

in the array is considered to be the start of a cycle, because each element should

be compared with every element of the array to be cycled to its correct index [1].

1.2: Algorithm

1. Start with the first index of the array and consider it to be the start of a

cycle.

2. Count the number of elements less than the current element, notated n.

3. Find the correct index for the current element by adding n to the current

index i.

4. Swap the current element to its correct index.

5. The start of the next cycle is the swapped element, and the program

iterates over the entire array until it is sorted.

3

1.3: Time-Complexity

Table 1.3.1

Case Time Complexity

Worst Case O()𝑛2

Average Case O()𝑛2

Best Case O(n)

The worst case of cycle sort would be an array sorted in descending order,

leading to a slow sorting algorithm, the number of cycles needed to sort the array

correctly increases, since each element has to be compared to all other elements

and be swapped to its correct index.

The average case time complexity depends on how the data is sorted, the

sorting process could take O() or better.𝑛2

The best case scenario would be if the data is sorted in an ascending order,

it would take O(n) since there would be no swapping of elements, and only the

comparison process would occur.

1.4: Space Complexity

The space complexity for the cycle sort algorithm is O(1), meaning that it

uses a constant amount of memory regardless of the size of input data. This

property of cycle sort is an advantage, since sorting is not taking up extra space in

memory and is only swapping indices.

4

1.5: Stability

This algorithm is unstable, if there are duplicate elements, the output may

not preserve the order of these elements after sorting. If an application deems it

necessary to maintain the relative order of data, then cycle sort would not be the

best sorting algorithm to use.

1.6: Memory Allocation

Cycle sort is an in-place sorting algorithm, the process of data

manipulation does not take up more memory space, since it is comparing and

cycling elements in the already allocated memory.

1.7: Example

Index 0 1 2 3 4

Element 5 2 0 4 3

For i staring at index 0, the first element to compare is 5, to be swapped to index n + i,

n = number of elements less than current element

i = current index

Count the number of elements less than 5, in this case n is equal to 4, and i is at index 0, 4 + 0 is

4, meaning 5 should be in index 4.

Index 0 1 2 3 4

Element 2 0 4 5

Index 0 is now empty, and 5 is in place of 3, since 3 still needs to be indexed, the next element to

compare would be 3.

The number of elements less than 3 is 2, and i is at index 0, so 3 should be placed at index 2 + 0

= 2. 3 is now in place of 0.

5

Index 0 1 2 3 4

Element 2 3 4 5

Since index 0 is still empty, the first cycle is still not complete. 0 is the next element to be

compared. The number of elements less than 0 are 0, and i is at index 0, so 0 should be indexed

at 0 + 0 = 0.

Index 0 1 2 3 4

Element 0 2 3 4 5

The first index of the array [0] now has an element, so the first cycle is done. The algorithm goes

through all elements until it has traversed the entire array and is sorted. In this case, the array was

sorted using one cycle.

6

2. Cocktail Sort

2.1: Description

Cocktail sort is a variation of bubble sort, except it is bidirectional. In

bubble sort, the array is iterated over from the starting index until the last index,

and the items are swapped depending on the comparison. As for cocktail sorting,

the array is iterated over twice, once from the first index to last, and one from the

second to last index to the first index. After the first iteration, the largest element

in the array is sorted to the end of the array, which is why the second iteration

starts from the second to last element. This iteration process is repeated until the

data is sorted. For the algorithm to know when to stop, there should be no

swapping of elements, meaning the data was correctly sorted [2].

2.2: Algorithm

1. The first iteration starts with the first index i, and compares it with the

second index j, if i is greater than j, the two items will be swapped.

2. i and j are incremented and compared again, until j is at the last index.

3. Since the last index j is now the largest element in the array, j and i are

decremented.

4. j is now at the second to last element and i is at the element before, the two

current elements are compared and swapped if needed.

5. The second iteration goes from the second to last element of the array until

the first element.

6. This iteration process is repeated until no swapping of elements occurs,

meaning the data is sorted.

7

2.3: Time-Complexity

Table 2.3.1

Case Time Complexity

Worst Case O()𝑛2

Average Case O()𝑛2

Best Case O(n)

The worst case of cocktail sort would be an array sorted in descending

order, leading to a slow sorting algorithm, the number of iterations needed would

increase if the data is reverse sorted.

The average case time complexity depends on how the data is sorted, the

sorting process could take O() or better.𝑛2

The best case scenario would be if the data is sorted in an ascending order,

it would take O(n) since there would be no swapping of elements, and only the

comparison process would occur.

2.4: Space Complexity

The space complexity for the cocktail sort algorithm is O(1), meaning that

it uses a constant amount of memory regardless of the size of input data. Sorting

is not taking up extra space in memory, since it is only swapping elements and the

use of extra memory is not needed.

2.5: Stability

Since cocktail sorting is based on bubble sort, both algorithms are stable.

If there are duplicate elements in an array, their relative order is maintained.

8

2.6: Memory Allocation

Cocktail sort is an in-place sorting algorithm, since it uses a constant

amount of memory space.

2.7: Example

Index 0 1 2 3 4

Element 5 2 0 4 3

i/j iteration i j

The first iteration starts at i = 0, and j = i + 1, 5 and 2 are compared and swapped.

Index 0 1 2 3 4

Element 2 5 0 4 3

i/j iteration i j

i and j are iterated, 5 and 0 are compared and swapped.

Index 0 1 2 3 4

Element 2 0 5 4 3

i/j iteration i j

After swapping 0 and 5, i and j are iterated, 5 and 4 are compared and swapped.

9

Index 0 1 2 3 4

Element 2 0 4 5 3

i/j iteration i j

j and i are iterated, and 5 and 3 are compared and swapped.

Index 0 1 2 3 4

Element 2 0 4 3 5

i/j iteration i j

The first iteration over the array is done, and the largest element in the array is at the last index.

Index 0 1 2 3 4

Element 2 0 4 3 5

i/j iteration i j

In the second iteration, i and j are decremented, and 4 and 3 are compared and swapped.

10

Index 0 1 2 3 4

Element 2 0 3 4 5

i/j iteration i j

i and j are decremented again, and 0 and 3 are compared, but not swapped since 3 is greater than

0.

Index 0 1 2 3 4

Element 2 0 3 4 5

i/j iteration i j

After i and j are decremented, 2 and 0 are compared and swapped.

Index 0 1 2 3 4

Element 0 2 3 4 5

i/j iteration i j

Since i and j are now back to the beginning of the array.

The algorithm iterates over the array the same way, and in this case since no swaps would occur,

then the data is sorted and the iteration process ends.

11

3. Strand Sort

3.1: Description

Strand sorting algorithm is a recursive sorting algorithm that works on

data structures that can easily be concatenated such as linked lists. The algorithm

works by using a temporary sublist to sort the input data into an output list. The

first element of the list is moved to the temporary sublist, and each following

element is compared to the last element in the sublist, if it is greater, it is moved to

the sublist, if it is less, it stays in the main list to be moved in later recursions [3].

3.2: Algorithm

1. A temporary sublist is created, and the first element of the input list is

moved to the temporary list.

2. The node pointer p is incremented and checks if the element is less than or

greater than the last element of the sublist, if it is greater, the element is

moved to the sublist. If it is less, the element stays in the input list until the

next recursion.

3. The algorithm goes over the list until pointer p is equal to NULL.

4. The resulting sublist of the first recursion is merged with the output list.

5. The algorithm goes over the list again, and the first element is moved to

the sublist.

6. The list is traversed, and the algorithm is recursively executed until the

output list is sorted.

12

3.3: Time-Complexity

Table 3.3.1

Case Time Complexity

Worst Case O()𝑛2

Average Case O(n log n)

Best Case O(n)

The worst case of strand sort would be a list sorted in descending order,

leading to a slow sorting algorithm, the number of recursions needed to sort the

list would lead to a higher execution time.

The average case time complexity depends on how the data is sorted, the

sorting process could take O(n log n), if the data is randomly or partially sorted.

The best case scenario would be if the data is sorted in an ascending order,

it would take O(n). Since there would be only one element in the sublist, the first

element, there would be no more than one concatenation of lists, leading to a

faster execution time.

3.4: Space Complexity

The space complexity for the strand sort algorithm is O(n), meaning that it

uses extra memory space. The algorithm uses extra memory space than allocated

for the input list. Extra memory space is needed for the temporary sublist and for

the output list.

3.5: Stability

The strand sort algorithm is a stable sorting algorithm. If order of sorted

duplicates is important, then this algorithm is a possible option.

13

3.6: Memory Allocation

Strand sort is not an in-place sorting algorithm. Since the output list and

sublist use extra memory over the input array. The algorithm uses more memory

to sort the list than the allocated memory for the input array.

3.7: Example

Input List:

The input list is a randomly sorted list, the first element, 5 will be moved to a sublist.

Temporary Sublist:

The list is then traversed to compare each element to 5. Starting at 0, 0 < 5, therefore 0 stays in

the input list until the next recursion. Same goes for every element. Since no element is greater

than 5, only 5 will end up in the sublist, and then be merged with the output list.

Output List:

After merging the temporary list with the output list, a recursive call is executed to sort the rest.

14

Input List:

The first element 0, is moved to the temporary list.

Temporary Sublist:

The list is traversed, and every element that is greater than 0 is inserted into the temporary list.

Temporary Sublist:

Since 2 is greater than 0, 2 is added to the sublist. 4 is then compared to the last element in the

sublist, which is 2. 4 is greater than 2, so it is added to the list.

Temporary Sublist:

15

3 is now to be compared with 4, since 3 is less than 4, it stays in the input list.

Since traversal of the input list in the second recursion is over, the sublist and the output list are

merged and sorted.

Input List:

Temporary Sublist:

Output List:

The only element left is 3, so for the third recursion 3 will be the only element in the temporary

sublist, and it will merge with the output list, giving the following list:

Output List:

The final output is a sorted linked list, the same algorithm could be applied to other data

structures.

16

4. Bucket Sort

4.1: Description

Bucket sorting is an algorithm that divides an input into “buckets”, where

each individual bucket is sorted using the same algorithm or a different one, such

as insertion sort. These buckets could be any data structure that is flexible, such as

a hash table, or an array of linked lists. After the individual buckets are sorted,

they are then merged into a sorted output. This sorting algorithm is very efficient

for sorting floating point numbers [4]. The array of linked lists is used to

implement a hashtable, and the size of the array is determined by the load factor

and the expected number of elements. The load factor depends on how full the

table is expected to be, for example, a table is expected to be 75% full, the load

factor would be 0.75. The number of buckets is then determined by dividing the

expected number of elements over the load factor, and then rounding that number

up to the closest integer (ceiling), this method is used for integers. For floating

point numbers, they can be multiplied by a specific number (i.e 10) to convert

them into integers, and then be hashed that way [5].

4.2: Algorithm

1. The algorithm determines the number of expected elements to be sorted.

2. The table size is determined using the load factor and the number of

elements.

3. For floating point numbers, multiply by a large constant, and take floor of

that number, this determines which index the number should be stored in.

4. The list is traversed, and each element is stored in its correct index in the

hashtable, creating a linked list in each used index.

5. The individual buckets (lists) are sorted using any other sorting algorithm.

6. All sorted buckets are then merged together into an output list.

17

4.3: Time-Complexity

Table 4.3.1

Case Time Complexity

Worst Case O(n + k)

Average Case O(n + k)

Best Case O(n + k)

n: number of elements.

k: number of buckets.

The worst case of bucket sort would be an array sorted in descending

order, the algorithm iterates over the full list, and be placed into their respective

buckets. A reversely sorted array would not cause the algorithm to perform

slower, since the iteration and bucket splitting is done regardless of how the input

data is sorted.

The average and best case are also O(n + k), since the full process is done

regardless of how the data is spread in the list. The average case being a randomly

distributed data, and the best case being the data is sorted. The traversal and

bucketting of the input is done regardless of the input.

4.4: Space Complexity

The space complexity for the bucket sort algorithm is O(n), meaning that

it uses extra memory space. The algorithm uses extra memory space than

allocated for the input list. Extra memory space is needed for the hashtable and

the linked lists formed through the hashing process.

18

4.5: Stability

The bucket sort algorithm may or may not be a stable sorting algorithm. If

buckets are sorted using a stable algorithm, such as insertion sort, then bucket sort

is stable. If the buckets are sorted using an unstable algorithm, such as selection

sort, then bucket sort is unstable.

4.6: Memory Allocation

Bucket sort memory allocation depends on the implementation. Bucket

sorting is mostly not an in-place algorithm, since it uses extra memory space for

the hashtable, linked lists, and output lists. Depending on the implementation,

bucket sort could be in-place. Using an in-place bucket sorting algorithm, where

buckets are created within the original array.

4.7: Example

Index 0 1 2 3 4

Element 0.4 0.2 0.5 0.1 0.3

i iteration i

The number of elements in the array is 5 elements, and assuming extra elements could be added,

and the table could be 75% full, the table size could be determined by dividing the expected

number of elements (5) over the load factor (0.75), and taking its ceiling value.

Table size = 5 / 0.75 = ceil (6.67) = 7

i iterates over the table to convert the decimals to integers, then store them into their respective

buckets.

19

Hashtable:

Iterating over the elements of the table to convert them to integers:

Integer = floor (element * 10)
Table 4.7.1

Index of Input element Integer = floor (element * 10)

0 0.4 4

1 0.2 2

2 0.5 5

3 0.1 1

4 0.3 3

20

To find the respective index for each element, index = element % table size.

Table 4.7.2

Index of Input Element Index = element % table size

0 4 Index = 4 % 7 = 4

1 2 Index = 3 % 7 = 2

2 5 Index = 5 % 7 = 5

3 1 Index = 1 % 7 = 1

4 3 Index = 3 % 7 = 3

After determining where each element should be indexed into the hashtable, they are added to

their respective index, and then sorted.

Hashtable:

21

Looking at each linked list at each index, all lists are sorted in an ascending order. All buclets in

the hashtable are then merged into an output list.

Output List:

22

5. Comb Sort

5.1: Description

Comb sort is another algorithm that improves upon the bubble sort

algorithm. In bubble sort, the algorithm uses a comparison gap of 1, as opposed to

the comb sort algorithm, which uses a larger gap, and this gap decrements by a

factor of 1.3, and iterates until the gap is at 1. The 1.3 shrink factor was

determined after testing the comb sort algorithm over a very large number of

random lists. After each shrink, the array is traversed using the gap size to

compare and swap elements, these are called runs [6].

5.2: Algorithm

1. The algorithm determines the gap size using the size of the array, if an

array is of size 5, the gap size would be 5.

2. For the first run, the first and last elements are compared and swapped if

necessary.

3. The gap is shrunk by a factor of 1.3, and the elements are traversed,

compared and swapped.

4. The gap shrinks until the value is 1, this signifies the last run. The array is

once again traversed, each element is compared to its adjacent element and

swapped if needed. This run completes the traversal of the array, and the

sorting process is done.

23

5.3: Time-Complexity

Table 5.3.1

Case Time Complexity

Worst Case O()𝑛2

Average Case O()𝑛2

Best Case O(n log n)

The worst case of comb sort is O() if an array is reverse sorted, the𝑛2

algorithm would need to iterate over the list n number of times, and with each

iteration swaps are bound to happen, leading to a slow algorithm. The gap factor

would not do much improvement in such a case.

For the average case, with the data randomly dispersed, the algorithm still

takes O(). The iteration and swapping process still needs to happen, meaning𝑛2

the time complexity would not be improved in the average case.

The best case is improved to O(n log n). If the data is already sorted, the

algorithm only traverses and compares the elements without swapping.

5.4: Space Complexity

The space complexity for the comb sort algorithm is O(1), meaning that it

does not use extra memory space.The algorithm compares and swaps the elements

within the allocated memory for the input array.

24

5.5: Stability

The comb sort algorithm is an unstable algorithm, since the relative order

of duplicates is not maintained. The swapping of elements could cause mix ups in

maintaining the order of duplicates.

5.6: Memory Allocation

Comb sort is an in-place sorting algorithm, since it uses the exact allocated

memory for the input array, without moving out of that allocated area for extra

memory. The sorting is only done within the input array.

5.7: Example

Index 0 1 2 3 4

Element 5 2 0 4 3

gap

The gap starts at value 5, same as the array size. 5 and 3 are compared, since 3 is less than 5, they

are swapped.

Index 0 1 2 3 4

Element 3 2 0 4 5

gap

To find the value of the next gap size, the previous gap size is shrunk by a factor of 1.3. In this

case the next gap size is 5 / 1.3 = 3

25

Index 0 1 2 3 4

Element 3 2 0 4 5

gap

The gap is shrunk to a value of 3, and 3 and 4 are compared. Since 4 is greater than 3, no

swapping occurs and the gap is incremented.

Index 0 1 2 3 4

Element 3 2 0 4 5

gap

The elements 2 and 5 are compared but not swapped because 5 is greater than 2. Since the gap is

at the last element, it is shrunk again.

3 / 1.3 = 2

Index 0 1 2 3 4

Element 3 2 0 4 5

gap

Elements 0 and 3 are compared and swapped. The gap is incremented to compare the next

values.

26

Index 0 1 2 3 4

Element 0 2 3 4 5

gap

After incrementing the gap, 2 and 4 are compared, but not swapped. The gap increments again

until the end of the array. No swaps occur. The gap is shrunk again to 2 / 1.3 = 1.

Index 0 1 2 3 4

Element 0 2 3 4 5

gap

The gap now compares adjacent elements and swaps if necessary. The gap is incremented to go

over the entire array. After the gap reaches the end of the array without any swaps, the array is

sorted.

27

Summary

Table 6.1

Algorithm Time

Complexity

Space

Complexity

Stability Memory

Allocation

Cycle Sort O()𝑛2 O(1) Unstable In-Place

Cocktail Sort O()𝑛2 O(1) Stable In-Place

Strand Sort O()𝑛2 O(n) Stable Not in-place

Bucket Sort O(n + k) O(n) Either Either

Comb Sort O()𝑛2 O(1) Unstable In-Place

In conclusion, there is no “best” sorting algorithm to use, since the choice of algorithm

depends on the goal of the program. If a program aims for speed, then bucket sorting is the best

choice, but if the program needs to be contained in a restricted memory area, then bucket sorting

wouldn't be the ideal choice. A better choice would be cycle, cocktail, or comb sorting. If the

program data needs to be sorted with respect to the order, cocktail sorting or strand sorting is the

way to go.

The choice of sorting algorithm also depends on the data itself, the type of the given data.

For integers, any of the above algorithms are efficient. For floating point numbers, bucket sorting

would be the most effective, because of how floating point numbers are distributed, making it

efficient to divide them into buckets and sorting each bucket individually. Bucket sorting would

also be very efficient to sort strings, the input strings can be hashed to integers, and these integers

be sorted in the buckets.

Another very important thing to keep in mind when choosing a sorting algorithm is the

size of the input data. If the data size is small, cycle, strand, and cocktail sorting would be most

efficient in dealing with less data. Strand sorting would be very inefficient for larger data since it

uses too much space and the number of recursions would increase with more data. Considering

28

these three algorithms, cocktail sort would be better than strand and cycle sorting. Since cocktail

sorting is in-place and has a space complexity of O(1), and is stable. Bucket and comb sorting

would be very efficient with larger data sizes. Since comb sorting is an enhancement of bubble

sorting, it can work very well with large data since it can decrease the number of element

swapping with the larger gap. Bucket sorting is especially efficient for large data that is

uniformly distributed. The uniform distribution minimizes the number of collisions in the

hashtable. For larger data sizes, bucket sorting would be more effective if memory allocation

isn't a restricting factor, but if memory is limited, then an in-place sorting algorithm would work

better, such as comb sorting.

29

References

1) “Cycle Sort.” GeeksforGeeks, GeeksforGeeks, 15 Feb. 2023,

www.geeksforgeeks.org/cycle-sort/. (Accessed: 14th February 2023)

2) “Cocktail Sort.” GeeksforGeeks, GeeksforGeeks, 19 July 2022,

www.geeksforgeeks.org/cocktail-sort/. (Accessed: 15th February 2023)

3) YouTube, YouTube, 25 Apr. 2021, www.youtube.com/watch?v=jHzFJU2-oVA. (Accessed

22 Feb. 2023)

4) Heineman, G. T. (n.d.). Algorithms in a Nutshell. O'Reilly.

5) “Load Factor and Rehashing.” GeeksforGeeks, GeeksforGeeks, 21 Jan. 2023,

www.geeksforgeeks.org/load-factor-and-rehashing/. (Accessed: 23rd February 2023)

6) “Comb Sort.” GeeksforGeeks, GeeksforGeeks, 10 Jan. 2023,

www.geeksforgeeks.org/comb-sort/. (Accessed 23 Feb. 2023)

30

