Chapter 13 Abstract Classes and Interfaces

Dr. Asem Kitana
Dr. Abdallah Karakra

“\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

v

Abstract Classes

An abstract class cannot be used to create objects. An
abstract class can contain abstract methods, which are
implemented 1n concrete subclasses.

Superclass Superclass
classes . R classes
become more become
specific more general
Subclass Subclass

)\

[
Class design should ensure that a superclass contains common features of its

subclasses. Sometimes a superclass is so abstract that it cannot have any specific
instances. Such a class is referred to as an abstract class.

L

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All 2.
rights reserved.

DNV WNKE

public abstract class GeometricObject {
private String color = "white";
private boolean filled;
private java.util.Date dateCreated;

/*% Construct a default geometric object */
rotected GeometricObject() {
dateCreated = new java.util.Date();

}

/¥% Construct a geometric object with color and filled value */
protected GeometricObject(String color, boolean filled) {
dateCreated = new java.util.Date();
this.color = color;
this.filled = filled;
1

JS*¥% Return color */
public String getColor() {
return color;

¥

J** Set a new color */

public void setColor(String color) {
this.color = color;

¥

/** Return filled. Since filled is boolean,
* the get method is named isFilled */
public boolean isFilled() {
return filled;
}

S*% Set a new filled */

public void setFilled(boolean filled) {
this.filled = filled;

¥

/** Get dateCreated */
public java.util.Date getDateCreated() {
return dateCreated;

¥

@wverride
public String toString() {
return "created on " + dateCreated + "\“ncolor: " + color +
and filled: " + filled;

J2% Abstract method getArea =/
public abstract double getArea();

S¥% Abstract method getPerimeter */
public abstract double getPerimeter();

Methods

Abstract class name is italicized

Abstract Classes and Ab

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

The # sign indicates
protected modifier

#GeometricObject ()

#GeometricObject(color: string,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

+getArea(): double
+getPerimeter(): double

Abstract methods
are italicized

Methods getArea and getPerimeter are

overridden in Circle and Rectangle.
i ? Superclass methods are generally omitted
in the UML diagram for subclasses.
Circle Rectangle
-radius: double -width: double
- -height: double
+Circle()
+Circle(radius: double) +Rectangle(O .)
+Circle(radius: double, color: string, +Rectangle(width: double, height: double)
filled: boolean) +Rectangle(width: double, height: double,

color: string, filled: boolean)
+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void

+getRadius(): double
+setRadius(radius: double): void
+getDiameter(): double

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

abstract method 1n abstract class

J An abstract method cannot be contained in a
non-abstract class.

] If a subclass of an abstract superclass does not

implement all t

ne abstract met

must be defined abstract. In of]

non-abstract su

subclass.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

nods, the subclass
her words, 1n a

rights reserved.

class extended from an abstract
class, all the abstract methods must be |
implemented, even if they are not used in the \

object cannot be created from
abstract class

An abstract class cannot be instantiated using
the new operator, but you can still define its
constructors, which are invoked 1n the
constructors of 1ts subclasses. For instance,
the constructors of GeometricObject are
invoked in the Circle class and the Rectan
class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

object cannot be created from abstract
class

GeometricObject geoObject]l = new Circle(S);
GeometricObject geoObject2 = new Rectangle(S, 3);

A

abstract class without abstract
method

J A class that contains abstract methods
must be abstract.

It is possible to define an abstract class
that contains no abstract methods. In this
case, you cannot create instances of the\
class using the new operator. This cla

1s used as a base class for defining a ne
subclass.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All P
rights reserved.

superclass of abstract class may be
concrete

A subclass can be abstract even 1f 1ts
superclass 1s concrete. For example, the
Object class 1s concrete, but 1ts subclasses,
such as GeometricObject, may be abstract.

A concrete class 1s any normal class in a

program. This class will not have any
abstract methods.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

concrete method overridden to be
abstract

A subclass can override a method from 1its
superclass to define 1t abstract. This 1s rare,
but useful when the implementation of the
method 1n the superclass becomes invalid 1n
the subclass. In this case, the subclass must be

defined abstract. \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

abstract class Person {
protected String name;

public abstract String getDescription()

Lo ‘ Person ‘
Class Student extends Person { 1

private String major;

' Employee Student

public String getDescription() {
return name + " a student major in " + major;

J
J

Class Employee extends Person {
private float salary; \

public String getDescription() {
return name + " an employee with a salary of $ " + salary;

J
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All b
rights reserved.

Intertaces

What 1s an interface?
Why is an interface useful?

How do you define an interface?

How do you use an interface?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

/

What 1s an interface?
Why 1s an interface usetul?

An 1nterface 1s a classlike construct that contains
only constants and abstract methods. In many
ways, an interface 1s similar to an abstract class,
but the intent of an interface 1s to specify common
behavior for objects. For example, you can specity
that the objects are comparable, edible, clonea
using appropriate interfaces.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All P
rights reserved.

Define an Interface

To distinguish an interface from a class, Java uses the
following syntax to define an interface:

public interface InterfaceName {
constant declarations;
abstract method signatures;

}

Example:
public interface Edible {

/** Describe how to eat */

public abstract String howToEat () ;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Interface 1s a Special Class

An 1nterface 1s treated like a special class in Java.
Each interface 1s compiled into a separate bytecode
file, just like a regular class. Like an abstract class,
you cannot create an instance from an interface
using the new operator, but in most cases you can
use an interface more or less the same way you use
an abstract class. For example, you can use an

interface as g data type for a variable, as the re
of casting, and so on.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Example

You can now use the Edible interface to specity whether an
object 1s edible. This 1s accomplished by letting the class for
the object implement this interface using the implements
keyword. For example, the classes Chicken and Fruit
implement the Edible interface (See TestEdible).

Edible TestEdible -

Notation: .
: interface .

The interface name and the < Edible ? Animal
method names are italicized.
The dashed lines and hollow +howToEat(): String +sound(): String
friangles are used to point to
the interface. ZN S T

Fruit Chicken Tiger

i public interface Edible {
I I /** Describe how to eat */
C”m@el Apmel public abstract String howToEat():;

' 24

public interface Edible {
/** Describe how to egf */

public abstract string howToEat():

abstract class Animal {
private double weight;

public double getWeight() {
return weight;

public void setWeight (double weight) {

this.weight = weight;
}
J*% ReLUrn animal sound */
public abstract String sound();
}

class Chicken extends AZnimal implements Edible |

@override
public String howToEat() {
return "Chicken: Fry it";
}
@override
public String sound() {
return "Chicken: cock-a-doodle-doo™;

}

class Tiger extends Animal {

@Ooverride

public String sound() {
return "Tiger: RROOAARR™

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

L

abstract class Fruit implements Edible |
/{/ Data fields, constructors, and methods omitted here

I

class Orange extends Fruit {

@Ooverride

public String howToEat() |

return "Orange: Make orange juice™:;

class Apple extends Fruit |

@Override

public String howToEat() {

return "Apple:

Make apple cider™;

T1ger: RRODAARR
(hcken: Fry 1t
(hrcken: cock-a-dood!

Aple: Make apple cider

a-(lo0

rights reserved.

LV

4

Omitting Modifiers in Interfaces

All data fields are public final static and all methods are public
abstract in an interface. For this reason, these modifiers can be
omitted, as shown below:

public interface T1 { public interface T1 {
public static final int K = 1; Equivalent int K = 1;
public abstract void p(); void p();

} }

A constant defined in an interface can be accessed using s
InterfaceName.CONSTANT_NAME (e.g., T1.K).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All P
rights reserved.

Example: The Comparable Interface

// This interface is defined in
// java.lang package
package java.lang;

public interface Comparable<E> {
public int compareTo (E 0); \\\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All #
rights reserved.

The compareTo Method

Since all the numeric wrapper classes and
the Character class implement the
Comparable interface, the compareTo
method is implemented in these classes.

These classes are defined as follows 1n the
Java API: '

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Integer and Biglnteger Classes

public class Integer extends Number
implements Comparable<Integer>

@Override
public int compareTo(Integer o) {

}

{

public class BigInteger extends Number
implements Comparable<BigInteger>

@Override
public int compareTo (BigInteger o) {

}

{

String and Date Classes

public class String extends Object
implements Comparable<String> {

@Override
public int compareTo (String o) {

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

public class Date extends Object
implements Comparable<Date> {

@Override
public int compareTo (Date o) {

}

The compareTo Method

Thus, numbers are comparable, strings are comparable,
and so are dates. You can use the compareTo method to
compare two numbers, two strings, and two dates.

The compareTo method determines the order of this
object with the specified object 0 and returns a negative
integer, zero, or a positive integer if this object 1s less than,
equal to, or greater than o.

Example

1 System.out.println(new Integer(3).compareTo(new Integer(5)))
/-1

2 System.out.printin(""ABC" .compareTo('""ABE"")); // -2

3 java.util.Date datel = new java.util.Date(2013, 1, 1);

4 java.util.Date date2 = new java.util.Date(2012, 1, 1);

5 System.out.println(datel.compareTo(date2)); // 1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

9

N\

Example

Let n be an Integer object, s be a String object, and
d be a Date object. All the following expressions are

true.

n instanceof Integer s instanceof String d instanceof java.util.Date
n instanceof Object s instanceof Object d instanceof Object
n instanceof Comparable s instanceof Comparable d instanceof Comparable

N\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Generic sort Method

Since all Comparable objects have the
compareTo method, the java.util.Arrays
sort(Object[]) method in the Java API uses the
compareTo method to compare and

sorts the objects 1n an array, provided that the
objects are instances of the Comparable interface.

D\

Generic sort Method

java.math.*;

1
([]1 args) {
[] cities = { ! : =
java.util. .sort(cities);
(i=03; i<cities.length;i++)
{ out.print(cities[i] + Yk
out.println();

[] hugeNumbers = { BigInteger(

BigInteger(EYEVEY |
BigInteger(32)};
java.util. .sort(hugeNumbers) ;
(i=03; i<hugeNumbers.length;i++)
cout.print(hugeNumbers[i] + Y5 K

B Problems @ Javadoc [Declaration B Console ¥ X | B 3
<terminated> SortComparableObjects [Java Application] C:\Program Files\Java\jdk-17.0.5\bin\javaw.exe (Jan 14, 2023, 9:09:15 PN\

Atlanta Boston Savannah Tampa
54623239292 A432232323239292 2323231092923992

Comparable Rectangle

You cannot use the sort method to sort an array of
Rectangle objects, because Rectangle does not
implement Comparable. However, you can define
a new rectangle class that implements
Comparable. The instances of this new class are

comparable. \

Comparable Rectangle

comparableRectangleObject;

1
width;
height;

(width,
.width width;
.height = height;

QIR
width * height;

comparableRectangleObject;
Comparable< > {

width, height) {
(width, height);

}

- AT |
¥ [@uverride

(
(getArea() > o.getArea())

(getArea() < o.getArea())

2

+ height + + getArea();

comparableRectangleObject;

1
([1 args) {
[]1] rectangles = {

ComparableRectangle(-)

ComparableRectangle()

ComparableRectangle(-)

ComparableRectangle(-)3
java.util. .sort(rectangles);

(i=0; id<rectangles.length;i++)
1 .out.println|(jrectangles[i]D; 1}

cout.printlind);

El Problems @ Javadoc B Declaration B Console <

<terminated> SortRectangles [Java Apphcation] C:\Program Files‘\Jawva'jdk-17.0.5\bin'jawvaw.
Width 3.4 Height 5.4 Area: 18.36

Width 1.4 Height 25.4 Area: 35.559999999999995
Width 7.4 Height 35.4 Area: 261.96

Width 13.24 Height 55.4 Area: 733.496

Comparable Rectangle

ComparableRectangle 1s also an instance of
Rectangle, GeometricObject, Object,
and Comparable.

GeometricObject ‘ «interface»
Java.lang.Comparable<ComparableRectangle>
i}‘ +comparelo(o: ComparableRectangle): int

Rectangle | AN

ComparableRectangle \i

FIGure 13.5 ComparableRectangle extends Rectangle and implements Comparable.
N

The Cloneable Interface

The Cloneable interface specifies that an object
can be cloned. (used to create a copy of an object)

“\

The Cloneable Interface

Marker Interface: An empty interface.

A marker interface does not contain constants or methods.
It 1s used to denote that a class possesses certain desirable
properties. A class that implements the Cloneable
interface 1s marked cloneable, and its objects can be
cloned using the clone() method defined in the Object
class.

package java.lang; .\\\

public interface Cloneable {

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All k
rights reserved.

Example

Many classes (e.g., Date and ArrayList) in the Java library
implement Cloneable. Thus, the instances of these classes can be
cloned. For example, the following code

1 ArraylList<Double> Ti1stl = new ArraylList<>();
2 listl.add(1.5);
3 listl.add(2.5);
4 Tlistl.add(3.5);
5 ArraylList<Double> 1ist2 = (ArrayList<Double=)listl.clone();
6 ArrayList<Double> 1ist3 = listl;
7 lTist2.add(4.5);
8 Tist3.remove(l.5);
9 System.out.printin("listl 1s " + Tistl);
10 System.out.printin(’list2 1s " + 1ist2);
11 System.out.printin(’list3 is " + 1Ti1st3);
displays

1istl is [2.5, 3.5]
1ist2 1s [1.5, 2.5, 3.5, 4.5]
1ist3 is [2.5, 3.5]

rights reserved.

Example

int[] Tistl = {1, 2};

int[] Tist2 = Tistl.clone();

11stl1[0] = 7;

list2[1] = 8;

System.out.printin("listl 1s " + T1ist1[0] + ", " + Tistl[1]);
System.out.printIn("list2 is " + Tist2[0] + ", " + T1st2[1]);

O LM e g B

displays

T1stl 1s 7, 2 \\
Tist2 15 1, 8 ’
N

Interfaces vs. Abstract Classes

In an interface, the data must be constants; an abstract class can
have all types of data.

Each method 1n an interface has only a signature without
implementation; an abstract class can have concrete methods.

Variables Constructors Methods

Abstract class No restrictions. Constructors are invoked by subclasses through No restrictions.
constructor chaining. An abstract class cannot be
instantiated using the new operator.

Interface All variables must be No constructors. An interface_ cannot be instantiated All methods must be public
public static final. using the new operator. abstract instance methods

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Interfaces vs. Abstract Classes, cont.

All classes share a single root, the Object class, but there 1s no single root for
interfaces. Like a class, an interface also defines a type. A variable of an interface
type can reference any instance of the class that implements the interface. If a class
extends an interface, this interface plays the same role as a superclass. You can use
an interface as a data type and cast a variable of an interface type to its subclass,
and vice versa.

Interfacel 2 |4-
Interfacel_1 |4- ---------- Interfacel |4- ------------------ Interface2_1 |4- ----------------

]
]
1
[——

/

Object |q Class1 |4 Class2 |

Suppose that ¢ is an instance of Class2. ¢ 1s also an instance of Object, Classl
Interfacel, Interfacel 1, Interfacel 2, Interface2 1, and Interface2 2.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Whether to use an interface or a class?

*» Abstract classes and interfaces can both be used
to model common features.

How do you decide whether to use an interface or a
class?

¢ In general, a strong is-a relationship that clearly
describes a parent-child relationship shouldsb

modeled using classes.

For example, a statff member 1s a person.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All P
rights reserved.

\/
0‘0

Whether to use an interface or a class?

A weak 1s-a relationship, also known as an is-kind-of
relationship, indicates that an object possesses a certain

property.
A weak 1s-a relationship can be modeled using interfaces.

For example, all strings are comparable, so the String class
implements the Comparable interface.

You can also use interfaces to circumvent single inheritaﬂs&
restriction if multiple inheritance 1s desired.

In the case of multiple inheritance, you have to design @
as a superclass, and others as interface.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

