
Chapter 13 Abstract Classes and Interfaces

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1

Dr. Asem Kitana

Dr. Abdallah Karakra

Abstract Classes

An abstract class cannot be used to create objects. An

abstract class can contain abstract methods, which are

implemented in concrete subclasses.

Subclass

classes

become more

specific

Superclass Superclass

Subclass

classes

become

more general

Class design should ensure that a superclass contains common features of its

subclasses. Sometimes a superclass is so abstract that it cannot have any specific

instances. Such a class is referred to as an abstract class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

3

Abstract Classes and Abstract Methods

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
4

abstract method in abstract class

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
5

 An abstract method cannot be contained in a

non-abstract class.

 If a subclass of an abstract superclass does not

implement all the abstract methods, the subclass

must be defined abstract. In other words, in a

non-abstract subclass extended from an abstract

class, all the abstract methods must be

implemented, even if they are not used in the

subclass.

object cannot be created from

abstract class

An abstract class cannot be instantiated using

the new operator, but you can still define its

constructors, which are invoked in the

constructors of its subclasses. For instance,

the constructors of GeometricObject are

invoked in the Circle class and the Rectangle

class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
6

object cannot be created from abstract

class

GeometricObject geoObject1 = new Circle(5);

GeometricObject geoObject2 = new Rectangle(5, 3);

abstract class without abstract

method

 A class that contains abstract methods

must be abstract.

 It is possible to define an abstract class

that contains no abstract methods. In this

case, you cannot create instances of the

class using the new operator. This class

is used as a base class for defining a new

subclass.
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
8

superclass of abstract class may be

concrete

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
9

A subclass can be abstract even if its

superclass is concrete. For example, the

Object class is concrete, but its subclasses,

such as GeometricObject, may be abstract.

A concrete class is any normal class in a Java

program. This class will not have any

abstract methods.

concrete method overridden to be

abstract

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
10

A subclass can override a method from its

superclass to define it abstract. This is rare,

but useful when the implementation of the

method in the superclass becomes invalid in

the subclass. In this case, the subclass must be

defined abstract.

abstract class Person {

protected String name;
. . .

public abstract String getDescription() ;
. . .

}

Class Student extends Person {

private String major;
. . .

public String getDescription() {

return name + " a student major in " + major;

}

}

Class Employee extends Person {

private float salary;
. . .

public String getDescription() {

return name + " an employee with a salary of $ " + salary;

}

}

Person

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Interfaces

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
20

What is an interface?

Why is an interface useful?

How do you define an interface?

How do you use an interface?

What is an interface?

Why is an interface useful?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
21

An interface is a classlike construct that contains

only constants and abstract methods. In many

ways, an interface is similar to an abstract class,

but the intent of an interface is to specify common

behavior for objects. For example, you can specify

that the objects are comparable, edible, cloneable

using appropriate interfaces.

Define an Interface

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
22

To distinguish an interface from a class, Java uses the

following syntax to define an interface:

public interface InterfaceName {
constant declarations;
abstract method signatures;

}

Example:

public interface Edible {

/** Describe how to eat */

public abstract String howToEat();

}

Interface is a Special Class

An interface is treated like a special class in Java.

Each interface is compiled into a separate bytecode

file, just like a regular class. Like an abstract class,

you cannot create an instance from an interface

using the new operator, but in most cases you can

use an interface more or less the same way you use

an abstract class. For example, you can use an

interface as a data type for a variable, as the result

of casting, and so on.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
23

Example
You can now use the Edible interface to specify whether an

object is edible. This is accomplished by letting the class for

the object implement this interface using the implements

keyword. For example, the classes Chicken and Fruit

implement the Edible interface (See TestEdible).

RunTestEdibleEdible

24

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
25

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
26

Omitting Modifiers in Interfaces

All data fields are public final static and all methods are public

abstract in an interface. For this reason, these modifiers can be

omitted, as shown below:

public interface T1 {

public static final int K = 1;

public abstract void p();

}

Equivalent

public interface T1 {

int K = 1;

void p();

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
27

A constant defined in an interface can be accessed using syntax

InterfaceName.CONSTANT_NAME (e.g., T1.K).

Example: The Comparable Interface

// This interface is defined in

// java.lang package

package java.lang;

public interface Comparable<E> {

public int compareTo(E o);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
28

The compareTo Method

Since all the numeric wrapper classes and

the Character class implement the

Comparable interface, the compareTo

method is implemented in these classes.

These classes are defined as follows in the

Java API:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
29

Integer and BigInteger Classes

implements Comparable<Integer>

public class Integer extends Number

{

// class body omitted

@Override

public int compareTo(Integer o) {

// Implementation omitted

}

}

implements Comparable<BigInteger>

public class BigInteger extends Number

{

// class body omitted

@Override

public int compareTo(BigInteger o) {

// Implementation omitted

}

}

implements Comparable<String>

public class String extends Object

{

// class body omitted

@Override

public int compareTo(String o) {

// Implementation omitted

}

}

implements Comparable<Date>

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
30

public class Date extends Object

{

// class body omitted

@Override

public int compareTo(Date o) {

// Implementation omitted

}

}

String and Date Classes

The compareTo Method

Thus, numbers are comparable, strings are comparable,

and so are dates. You can use the compareTo method to

compare two numbers, two strings, and two dates.

The compareTo method determines the order of this

object with the specified object o and returns a negative

integer, zero, or a positive integer if this object is less than,

equal to, or greater than o.

Example

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
31

1 System.out.println(new Integer(3).compareTo(new Integer(5)));

// -1

2 System.out.println("ABC".compareTo("ABE")); // -2

3 java.util.Date date1 = new java.util.Date(2013, 1, 1);

4 java.util.Date date2 = new java.util.Date(2012, 1, 1);

5 System.out.println(date1.compareTo(date2)); // 1

Example

Let n be an Integer object, s be a String object, and

d be a Date object. All the following expressions are

true.

s instanceof String
s instanceof Object

s instanceof Comparable

d instanceof java.util.Date
d instanceof Object

d instanceof Comparable

n instanceof Integer
n instanceof Object

n instanceof Comparable

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
32

Generic sort Method

Since all Comparable objects have the

compareTo method, the java.util.Arrays

.sort(Object[]) method in the Java API uses the

compareTo method to compare and

sorts the objects in an array, provided that the

objects are instances of the Comparable interface.

Generic sortMethod

Comparable Rectangle

You cannot use the sort method to sort an array of

Rectangle objects, because Rectangle does not

implement Comparable. However, you can define

a new rectangle class that implements

Comparable. The instances of this new class are

comparable.

Comparable Rectangle

Comparable Rectangle

ComparableRectangle is also an instance of

Rectangle, GeometricObject, Object,

and Comparable.

The Cloneable Interface

The Cloneable interface specifies that an object

can be cloned. (used to create a copy of an object)

The Cloneable Interface

Marker Interface: An empty interface.

A marker interface does not contain constants or methods.

It is used to denote that a class possesses certain desirable

properties. A class that implements theCloneable

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
40

interface is marked cloneable, and its objects can be

cloned using the clone() method defined in the Object

class.

package java.lang;

public interface Cloneable {

}

Example
Many classes (e.g., Date and ArrayList) in the Java library

implement Cloneable. Thus, the instances of these classes can be

cloned. For example, the following code

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
41

Example

Interfaces vs. Abstract Classes
In an interface, the data must be constants; an abstract class can
have all types of data.

Each method in an interface has only a signature without
implementation; an abstract class can have concrete methods.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
48

Interfaces vs. Abstract Classes, cont.

Suppose that c is an instance of Class2. c is also an instance of Object, Class1,
Interface1, Interface1_1, Interface1_2, Interface2_1, and Interface2_2.

All classes share a single root, the Object class, but there is no single root for

interfaces. Like a class, an interface also defines a type. A variable of an interface

type can reference any instance of the class that implements the interface. If a class

extends an interface, this interface plays the same role as a superclass. You can use

an interface as a data type and cast a variable of an interface type to its subclass,

and vice versa.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
49

Whether to use an interface or a class?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
51

 Abstract classes and interfaces can both be used

to model common features.

How do you decide whether to use an interface or a

class?

 In general, a strong is-a relationship that clearly

describes a parent-child relationship should be

modeled using classes.

For example, a staff member is a person.

Whether to use an interface or a class?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
52

 A weak is-a relationship, also known as an is-kind-of

relationship, indicates that an object possesses a certain

property.

 A weak is-a relationship can be modeled using interfaces.

For example, all strings are comparable, so the String class

implements the Comparable interface.

 You can also use interfaces to circumvent single inheritance

restriction if multiple inheritance is desired.

 In the case of multiple inheritance, you have to design one

as a superclass, and others as interface.

