
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1

Chapter 7 Single-Dimensional

Arrays

Dr. Abdallah Karakra

Dr. Asem Kitana

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

Opening Problem

Read one hundred numbers, compute their

average, and find out how many numbers are

above the average.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Arrays

Array is a data structure that represents a collection of the same types of data.

Array stores a fixed-size sequential collection of elements of the same type.

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
4

Declaring Array Variables

 datatype[] arrayRefVar;//Reference to array

Example:

double[] myList;

 datatype arrayRefVar[]; // This style is allowed, but not

preferred

Example:

double myList[];

To use an array in a program, you must declare a variable to reference the
array and specify the array’s element type. Here is the syntax for declaring
an array variable:

myList

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
5

Creating Arrays

arrayRefVar = new datatype[arraySize];

Example:

myList = new double[10];

myList[0] references the first element in the array.

myList[9] references the last element in the array.

 We can create an array by using the new operator and assign its

reference to the variable with the following syntax:

myList
0 1 2 …………….. 9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
6

Declaring and Creating

in One Step

 datatype[] arrayRefVar = new

datatype[arraySize];

double[] myList = new double[10];

 datatype arrayRefVar[] = new

datatype[arraySize];

double myList[] = new double[10];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
7

The Length of an Array

Once an array is created, its size is fixed. It cannot be

changed. You can find its size using

arrayRefVar.length

For example,

myList.length returns 10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

✓ Check Point

8

Assume int[] t = {1, 2, 3, 4, 6}. What is t.length?

Answer : 5

If you declare an array double[] list = {3.4, 2.0, 3.5, 5.5,7.0}, the

highest index in array list is .

Answer : 4

How many elements are in array double[] list = new double[8]?

Answer : 8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
9

Default Values
When an array is created, its elements are assigned the

default value of

0 for the numeric primitive data types,

false for boolean types.

null for String types.

In Java, elements of an array are automatically initialized to some default

value. What is the default value for the elements of an array of integers?

Answer : 0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

✓ Check Point

10

If you declare an array double [] myArray=new double [10];

myArray [3] is

Answer : 0.0

If you declare an array int [] myArray=new int [10];

myArray [2] is

Answer : 0

If you declare an array boolean [] myArray=new boolean [10];

myArray [3] is

Answer : false

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
11

Indexed Variables
 The array elements are accessed through the index.

The array indices are 0-based, i.e., it starts from 0 to

arrayRefVar.length-1.

 If myList array holds ten double values then the

indices are from 0 to 9.

 Each element in the array is represented using the

following syntax, known as an indexed variable:

arrayRefVar[index];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
12

Using Indexed Variables

After an array is created, an indexed variable can

be used in the same way as a regular variable.

For example, the following code adds the value

in myList[0] and myList[1] to myList[2].

myList[2] = myList[0] + myList[1];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
13

Array Initializers

Declaring, creating, initializing in one step:

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand syntax must be in one

statement.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
14

Declaring, creating, initializing

Using the Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the

following statements:

double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
15

CAUTION

Using the shorthand notation, you have to
declare, create, and initialize the array all in
one statement. Splitting it would cause a
syntax error. For example, the following is
wrong:

double[] myList;

myList = {1.9, 2.9, 3.4, 3.5};

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
16

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After the array is created

0

1

2

3

4

0

0

0

0

0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
17

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

0

1

2

3

4

11

1

3

6

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
18

Processing Arrays

1. (Initializing arrays with input values)

2. (Initializing arrays with random values)

3. (Printing arrays)

4. (Summing all elements)

5. (Finding the largest element)

6. (Shifting elements)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
19

Initializing arrays with input values

Scanner input = new Scanner(System.in);

double [] myList = new double [10];

System.out.print("Enter " + myList.length + " values: ");

for (int i = 0; i < myList.length; i++)

myList[i] = input.nextDouble();

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Initializing arrays with input values

20

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
21

Initializing arrays with random values

for (int i = 0; i < myList.length; i++) {

myList[i] = (int) (Math.random() * 100);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
22

Printing arrays

for (int i = 0; i < myList.length; i++) {

System.out.print(myList[i] + “ “);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Initializing arrays with random values and printing

arrays

23

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
24

Summing all elements

double total = 0;

for (int i = 0; i < myList.length; i++) {

total += myList[i];

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
25

Finding the largest element

double max = myList[0];

for (int i = 1; i < myList.length; i++) {

if (myList[i] > max)

max = myList[i];

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
26

Shifting Elements
Sometimes you need to shift the elements left or right. Here is an

example of shifting the elements one position to the left and filling
the last element with the first element:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
27

Enhanced for Loop (for-each loop)

JDK 1.5 introduced a new for loop that enables you to traverse the complete array

sequentially without using an index variable. For example, the following code

displays all elements in the array myList:

for (double value: myList)

System.out.println(value);

In general, the syntax is

for (elementType value: arrayRefVar) {

// Process the value

}

You still have to use an index variable if you wish to traverse the array in a

different order or change the elements in the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

✓ Check Point

28

public class Mystery {

public static void main(String[] args) {

double[] x = {2.5, 3, 4, 6 ,5};

for (double value: x)

System.out.print(value + " ");

}

}

What is the output of the following code ?

Answer :

2.5 3.0 4.0 6.0 5.0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

✓ Check Point

29

for (int i = 0; i <= list.length; i++)

System.out.print(list[i] + " ");

 Correct the following code ?

Answer : The <= should be replaced by <

Answer :

x is 60

The size of numbers is 30

 .

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
30

Copying Arrays
Often, in a program, you need to duplicate an array or a part of an array.
In such cases you could attempt to use the assignment statement (=), as
follows:

list2 = list1;

The above statement does not copy the contents of the array referenced

by list1, but instead merely copies the reference value from list1 to

list2. After this statement, list1 and list2 reference the same array.

Before the assignment After the assignment

Garbage collection

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
31

public class Mystery {

public static void main(String[] args) {

double [] x = {2.5, 3, 4, 6 ,5};

double []y = {1,2,3};

y=x;

for (double value: x)

System.out.print(value + " ");

System.out.println();

for (double value: y)

System.out.print(value + " ");

}

}

2.5 3.0 4.0 6.0 5.0

2.5 3.0 4.0 6.0 5.0

Example

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
32

Copying Arrays

Using a loop:

int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)

targetArray[i] = sourceArray[i];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
33

Passing Arrays to Methods
public static void printArray(int[] array) {

for (int i = 0; i < array.length; i++) {

System.out.print(array[i] + " ");

}

}

Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};

printArray(list);

Invoke the method

printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

Note: When

passing an

array to a

method, the

reference of the

array is passed

to the method.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
34

Anonymous Array

The statement

printArray(new int[]{3, 1, 2, 6, 4, 2});

creates an array using the following syntax:

new dataType[]{literal0, literal1, ..., literalk};

There is no explicit reference variable for the array.

Such array is called an anonymous array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
35

Pass By Value
Java uses pass by value to pass arguments to a method. There
are important differences between passing a value of variables
of primitive data types and passing arrays.

 For a parameter of a primitive type value, the actual value is
passed. Changing the value of the local parameter inside the
method does not affect the value of the variable outside the
method.

 For a parameter of an array type, the value of the parameter
contains a reference to an array; this reference is passed to the
method(pass-by-sharing). Any changes to the array that occur
inside the method body will affect the original array that was
passed as the argument.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
36

public class Test {

public static void main(String[] args) {

int x = 1; // x represents an int value

int[] y = new int[10]; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

System.out.println("x is " + x); // x is 1

System.out.println("y[0] is " + y[0]);// y[0] is 5555

}

public static void m(int number, int[] numbers) {

number = 1001; // Assign a new value to number

numbers[0] = 5555; // Assign a new value to numbers[0]

}

}

Simple Example

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
37

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
38

Returning an Array from a Method
public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0,j = result.length - 1; i < list.length; i++, j--){

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
39

Trace the reverse Method

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
40

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

list2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

The reverse Method

41

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
42

Searching Arrays

 public class LinearSearch {

 /** The method for finding a key in the list */

 public static int linearSearch(int[] list, int key) {

 for (int i = 0; i < list.length; i++)

 if (key == list[i])

 return i;

 return -1;

 }

}

 list

key Compare key with list [i] for i = 0, 1, …

 [0] [1] [2] …

Searching is the process of looking for a specific element in
an array; for example, discovering whether a certain score is
included in a list of scores. Searching is a common task in
computer programming. There are many algorithms and data
structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and
binary search.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
43

Linear Search

The linear search approach compares the key

element, key, sequentially with each element in

the array list. The method continues to do so

until the key matches an element in the list, or

the list is exhausted without a match being

found. If a match is made, the linear search

returns the index of the element in the array

that matches the key. If no match is found, the

search returns -1.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
44

Linear Search Animation

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3

3

3

Key List

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
45

From Idea to Solution
/** The method for finding a key in the list */

public static int linearSearch(int[] list, int key) {

for (int i = 0; i < list.length; i++)

if (key == list[i])

return i;

return -1;

}

int[] list = {1, 4, 4, 2, 5, -3, 6, 2};

int i = linearSearch(list, 4); // returns 1

int j = linearSearch(list, -4); // returns -1

int k = linearSearch(list, -3); // returns 5

Trace the method

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Linear Search

46

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
47

Binary Search

For binary search to work, the elements in the

array must already be ordered. Without loss of

generality, assume that the array is in

ascending order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79

The binary search first compares the key with

the element in the middle of the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
48

Binary Search

 If the key is less than the middle element,
you only need to search the key in the first
half of the array.

 If the key is equal to the middle element,
the search ends with a match.

 If the key is greater than the middle
element, you only need to search the key in
the second half of the array.

Consider the following three cases:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Binary Search

 Let low and high denote, respectively, the first

index and last index of the array that is currently

being searched. Initially, low is 0 and high is

list.length–1. Let mid denote the index of the

middle element, so mid is (low + high)/2.

 Example:

{2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79}

Low = 0 (first index)

High = 12 (last index)

Mid = (0+12)/2 = 6 (sixth index)

49

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
50

Binary Search

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
51

Binary Search

The binary search method returns the index of the

element in the list that matches the search key if it

is contained in the list. Otherwise, it returns

(-insertion point – 1).

(insertion point equals the index of the “low”

element in the last iteration).

The insertion point is the point at which the key

would be inserted into the list.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
52

From Idea to Soluton
/** Use binary search to find the key in the list */

public static int binarySearch(int[] list, int key) {

int low = 0;

int high = list.length - 1;

while (high >= low) {

int mid = (low + high) / 2;

if (key < list[mid])

high = mid - 1;

else if (key == list[mid])

return mid;

else

low = mid + 1;

}

return -1 - low;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Binary Search

53

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
54

The Arrays.binarySearch Method
Since binary search is frequently used in programming, Java provides several
overloaded binarySearch methods for searching a key in an array of int, double,
char, short, long, and float in the java.util.Arrays class. For example, the
following code searches the keys in an array of numbers and an array of
characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};

System.out.println("Index is " + Arrays.binarySearch(list, 11));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};

System.out.println("Index is " +

java.util.Arrays.binarySearch(chars, 't'));

For the binarySearch method to work, the array must be pre-sorted in increasing
order.

Return is 4

Return is –4 (insertion point
is 3, so return is -3-1)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Example

55

int[] num = {1,2,4,5,6};

System.out.println("Index is " + java.util.Arrays.binarySearch(num, 3));

Return is (Index is -3)

int[] num = {6,5,4,2,1};

System.out.println("Index is " + java.util.Arrays.binarySearch(num, 3));

Return is (Index is -1)

Not sorted in increasing order

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
56

Sorting Arrays

Sorting, like searching, is also a common task in

computer programming. Many different algorithms

have been developed for sorting. This section

introduces a simple sorting algorithms:

selection sort.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
57

Selection Sort
Selection sort finds the smallest number in the list and places it first. It then finds
the smallest number remaining and places it second, and so on until the list
contains only a single number.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
58

From Idea to Solution
for (int i = 0; i < list.length; i++) {

select the smallest element in list[i..listSize-1];

swap the smallest with list[i], if necessary;

// list[i] is in its correct position.

// The next iteration apply on list[i+1..listSize-1]

}

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

...

list[0] list[1] list[2] list[3] ... list[10]

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
59

Wrap it in a Method
/** The method for sorting the numbers */

public static void selectionSort(double[] list) {

for (int i = 0; i < list.length; i++) {

// Find the minimum in the list[i..list.length-1]

double currentMin = list[i];

int currentMinIndex = i;

for (int j = i + 1; j < list.length; j++) {

if (currentMin > list[j]) {

currentMin = list[j];

currentMinIndex = j;

}

}

// Swap list[i] with list[currentMinIndex] if necessary;

if (currentMinIndex != i) {

list[currentMinIndex] = list[i];

list[i] = currentMin;

}

}

}
Invoke it

selectionSort(yourList)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Selection Sort

60

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
61

The Arrays.sort Method

Since sorting is frequently used in programming, Java provides several
overloaded sort methods for sorting an array of int, double, char, short,
long, and float in the java.util.Arrays class. For example, the following
code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};

java.util.Arrays.sort(numbers);

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};

java.util.Arrays.sort(chars);

Java 8 now provides Arrays.parallelSort(list) that utilizes the multicore
for fast sorting.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Example

62

public static void main(String[] args) {

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};

java.util.Arrays.sort(numbers);

for (int i=0;i<numbers.length;i++)

System.out.print(numbers[i]+" ");

}

1.9 2.9 3.4 3.5 4.4 6.0

Another way

import java.util.Arrays;

Arrays.sort(numbers);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Chapter 8 Multidimensional

Arrays

The previous chapter introduced how to use one-

dimensional arrays to store linear collections of

elements.

You can use a two-dimensional array to store a

matrix or a table.

63

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Multidimensional Arrays

 For example, this table that lists the distances between cities can

be stored using a two dimensional array named distances.

64

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
65

Multidimensional Arrays

Abdallah Karakra

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
66

Declare/Create Two-dimensional Arrays

// Declare array ref var

dataType[][] refVar;

// Create array and assign its reference to variable

refVar = new dataType[10][10];

// Combine declaration and creation in one statement

dataType[][] refVar = new dataType[10][10];

// Alternative syntax

dataType refVar[][] = new dataType[10][10];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
67

Declaring Variables of Two-

dimensional Arrays and Creating

Two-dimensional Arrays

int[][] matrix = new int[10][10];

or
int matrix[][] = new int[10][10];

matrix[0][0] = 3;

for (int i = 0; i < matrix.length; i++)
for (int j = 0; j < matrix[i].length; j++)
matrix[i][j] = (int)(Math.random() * 1000);

double[][] x;

row column

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
68

Two-dimensional Array Illustration

array.length? 4

array[0].length? 3

matrix.length? 5

matrix[0].length? 5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
69

Lengths of Two-dimensional

Arrays

int[][] x = new int[3][4];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
70

Ragged Arrays

Each row in a two-dimensional array is itself an array. So,

the rows can have different lengths. Such an array is

known as a ragged array. For example,

int[][] matrix = {

{1, 2, 3, 4, 5},

{2, 3, 4, 5},

{3, 4, 5},

{4, 5},

{5}

};

matrix.length is 5

matrix[0].length is 5

matrix[1].length is 4

matrix[2].length is 3

matrix[3].length is 2

matrix[4].length is 1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
71

Ragged Arrays, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
72

Initializing arrays with random values

for (int row = 0; row < matrix.length; row++) {

for (int column = 0; column < matrix[row].length; column++) {

matrix[row][column] = (int)(Math.random() * 100);

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Two-dimensional Array with

random values

73

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
74

Summing all elements

int total = 0;

for (int row = 0; row < matrix.length; row++) {

for (int column = 0; column < matrix[row].length; column++) {

total += matrix[row][column];

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
75

Multidimensional Arrays

Occasionally, you will need to represent n-

dimensional data structures. In Java, you can create

n-dimensional arrays for any integer n.

The way to declare two-dimensional array

variables and create two-dimensional arrays can be

generalized to declare n-dimensional array

variables and create n-dimensional arrays for n >=

3.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
76

double[][][] scores = new double[6][5][2];

double[][][] scores = {

{{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},

{{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},

{{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},

{{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},

{{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},

{{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}

};

scores[i] [j] [k]

Which student

Which exam

Multiple-choice or essay

