
Chapter 15 Event-Driven

Programming

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1

Dr. Asem Kitana

Dr. Abdallah Karakra

Motivations

Suppose you want to write a GUI

program that lets the user enter a

loan amount, annual interest rate,

and number of years and click the

Compute Payment button to obtain

the monthly payment and total

payment. How do you accomplish

the task? You have to use event-

driven programming to write the

code to respond to the button-

clicking event.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

Motivations

Taste of Event-Driven Programming

The example displays a button in the frame. A
message is displayed on the console when a
button is clicked.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3

Event handler

Create handler

Register handler

Defining

Two

handler

classes

Trace Execution
public class HandleEvent extends Application{

public void start(Stage primaryStage) {

…

OKHandlerClass handler1 = new OKHandlerClass();

btOK.setOnAction(handler1);

CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2);

…

primaryStage.show(); // Display the stage

}

}

1. Start from the

main method to

create a window and

display it

class OKHandlerClass implements EventHandler<ActionEvent> {

@Override

public void handle(ActionEvent e) {

System.out.println("OK button clicked");

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
8

Trace Execution
public class HandleEvent extends Application{

public void start(Stage primaryStage) {

…

OKHandlerClass handler1 = new OKHandlerClass();

btOK.setOnAction(handler1);

CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2);

…

primaryStage.show(); // Display the stage

}

}

2. Click OK

class OKHandlerClass implements EventHandler<ActionEvent> {

@Override

public void handle(ActionEvent e) {

System.out.println("OK button clicked");

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
9

Trace Execution
public class HandleEvent extends Application{

public void start(Stage primaryStage) {

…

OKHandlerClass handler1 = new OKHandlerClass();

btOK.setOnAction(handler1);

CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2);

…

primaryStage.show(); // Display the stage

}

}

class OKHandlerClass implements EventHandler<ActionEvent> {

@Override

public void handle(ActionEvent e) {

System.out.println("OK button clicked");

}

}

3. The JVM invokes

the listener’s handle

method

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
10

Procedural vs. Event-Driven

Programming

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1

1

 Procedural programming is executed in procedural

order(The program’s flow execution is determined by

the program’s structure (and perhaps its input)).

 In event-driven programming, code is executed

upon activation of events(In event-driven code,

the user is responsible for determining what

happens next).

Events

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
12

 An event can be defined as a type of signal to the

program that something has happened.

 The event is generated by external user actions such

as mouse movements, mouse clicks, or keystrokes.

 For example, a button is the source object for a

button-clicking action event. An event is an instance

of an event class. The root class of the Java event

classes is java.util.EventObject.

Event Classes

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
13

Event Information

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
14

An event object contains whatever properties are

pertinent to the event. You can identify the source

object of the event using the getSource() instance

method in the EventObject class. The subclasses of

EventObject deal with special types of events,

such as button actions, window events, mouse

movements, and keystrokes. Table 16.1 lists

external user actions, source objects, and event

types generated.

Selected User Actions and Handlers

15

Selected User Actions and Handlers

What’s most important for you to take away from this table is that

different KINDS of source objects (GUI elements) generate different

KINDS of events (e.g., buttons get clicked; not moved, like the

mouse), and different kinds of events require different kinds of

handlers.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
16

The Delegation Model

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
17

The Delegation Model: Example

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
18

/ / Create the button

Button btOK = new Button("OK");

// Create handler to receive button’s events

OKHandlerClass handler = new OKHandlerClass();

/ *Regis ter the handler wi th the button

This t e l l s the button where t o send ActionEvent*/

btOK.setOnAction(handler);

5 Pearson Education, Inc. AllLiang, Introduction to Java Programming, Tenth Edition, (c) 201

rights reserved.
16

These two handler classes

(OKHandlerClass and

CancelHandlerClass)

are defined in the same

. j ava

Only one class in a . j ava

file can be publ ic , but

you can have “helper

classes” in the same file as

long as they’re not

publ ic .

Since these classes don’t

have any visibility

modifier, they have the

default visibility - package

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

Registering Handlers and

Handling Events

rights reserved.

Example: Control Circle

(without event handling)

Now let us consider to write a program that uses

two buttons to control the size of a circle.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
21

nc. All 20

ControlCircleWithoutEventHandling Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, I

Example: Control Circle

(without event handling)

Our program starts by extending

Appl icat ion , and overriding the s t a r t

method, where we build the UI

The Ci rc le goes into aStackPane

The two Buttons get created and put into an

HBox pane

The StackPane with the Ci rc le goes into

the middle section of a BorderPane, and the

HBox with the two Buttons goes into the

bottom section.

Finally, add the BorderPane to the Scene,

and the Scene to the Stage, and make the

Stage visible

That gets the UI created, but nothing is

configured to handle events (yet)

rights reserved.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
21

Example: Control Circle (with

event handling)

Now let us consider to write a program that uses

two buttons to control the size of a circle.

rights reserved.

c) 2015Liang, Introduction to Java Programming, Tenth Edition, (

rights reserved.
Pearson Education, Inc. All 22

The new CirclePane class will be an

extension of a StackPane that contains

the circle

Again, because we are not defining a

second publ ic class, this package-level-

visibility class can reside in the same

. j ava sourcefile.

Because it’s an extension of the

StackPane, the CirclePane can

access its own list of children, and add a

circle in its constructor

The CirclePane’s enlarge and

shrink methods simply add or subtract

2 to the circle’s current radius. In the

shrink method, it checks before

subtracting 2 to make sure it’s over 2 (the

radius can’t go negative, and it’s

probably a good idea to keep it from

going to zero, so > 2, as opposed to >=

2, is a wise idea.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

Inner Classes

rights reserved.

