
Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
1

Chapter 11 Inheritance and

Polymorphism

Dr. Asem Kitana

Dr. Abdallah Karakra

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
2

Inheritance

Suppose you will define classes to model circles,

rectangles, and triangles. These classes have many

common features. What is the best way to design

these classes so to avoid redundancy? The answer

is to use inheritance.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Superclasses and Subclasses

 Inheritance enables you to define a general class

(i.e., a superclass) and later extend it to more

specialized classes (i.e., subclasses).

 A triangular arrow pointing to the superclass is

used to denote the inheritance relationship

between the classes involved.

3

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
4

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

public class Person {

private String name;

private int age;

// constructor

public String getName() {return name;}

public void setName(String name){this.name=name;}

public int getAge() {return age;}

public void setAge(int age){this.age=age;}

…

}

public class Student extends Person { private int

studentNumber;

//constructor

public int getStudentNumber (){return studentNumber;}

public void setStudentNumber(int studentNumber)

{this.studentNumber = studentNumber;}

}

General

class

specific class

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

public class Person {

private String name;

private int age;

// constructor

public String getName() {return name;}

public void setName(String name){this.name=name;}

public int getAge() {return age;}

public void setAge(int age){this.age=age;}

…

}

public class Employee extends Person {

private double salary;

private String departmentName;

public double getSalary() {return salary;}

public void setSalary(double salary) {this.salary =salary;}

public String getDepartmentName() {return departmentName;}

public void setDepartmentName(String departmentName)

{this.departmentName = departmentName;}

}

General

class

specific

class

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Are superclass’s Constructor

Inherited?

10

No. They are not inherited.

They are invoked explicitly or implicitly. Explicitly using

the super keyword.

A constructor is used to construct an instance of a class.

Unlike properties and methods, a superclass's

constructors are not inherited in the subclass. They can

only be invoked from the subclasses' constructors, using

the keyword super. If the keyword super is not explicitly

used, the superclass's no-arg constructor is

automatically invoked.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

this(“No name yet”,0)

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
7

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
10

Using the Keyword super

 To call a superclass constructor

 To call a superclass method

The keyword super refers to the superclass

of the class in which super appears. This

keyword can be used in two ways:

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

calling a superclass constructor

 The syntax to call a superclass’s constructor is:

super(), or super(parameters)

 The statement super() invokes the no-arg

constructor of its superclass, and the statement

super(arguments) invokes the superclass

constructor that matches the arguments.

 The statement super() or super(arguments)

must be the first statement of the subclass’s

constructor.

11

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Superclass’s Constructor Is Always

Invoked
A constructor may invoke an overloaded constructor or
its superclass’s constructor. If none of them is invoked

explicitly, the compiler puts super() as the first statement

in the constructor. For example,

public A(double d) {

// some statements

}

is equivalent to
super();

public A(double d) {

// some statements

}

public A() {

}
is equivalent to

super();

11

public A() {

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
13

CAUTION

You must use the keyword super to call the

superclass constructor. Invoking a

superclass constructor’s name in a subclass

causes a syntax error. Java requires that the

statement that uses the keyword super

appear first in the constructor.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
14

Constructor Chaining

public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

Constructing an instance of a class invokes all the superclasses’ constructors

along the inheritance chain. This is known as constructor chaining.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
15

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

1. Start from the

main method

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
16

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

2. Invoke Faculty

constructor

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
17

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

3. Invoke Employee’s no-

arg constructor

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
18

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

4. Invoke Employee(String)

constructor

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
19

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

5. Invoke Person() constructor

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
20

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

6. Execute println

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
21

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

7. Execute println

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
22

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

8. Execute println

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
23

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

9. Execute println

animation

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Example on the Impact of a Superclass

without no-arg Constructor

Find out the errors in the program:
public class Apple extends Fruit {

}

class Fruit {

public Fruit(String name) {

System.out.println("Fruit's constructor is invoked");

}

}

Since no constructor is explicitly defined in Apple, Apple’s default no-arg constructor is

defined implicitly. Since Apple is a subclass of Fruit, Apple’s default constructor automatically

invokes Fruit’s no-arg constructor. However, Fruit does not have a

no-arg constructor, because Fruit has an explicit constructor defined. Therefore, the

program cannot be compiled.

Design Guide If

possible, you

should provide a

no-arg constructor

for every class to

make the class

easy to extend and

to avoid errors

24

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
25

Defining a Subclass

A subclass inherits from a superclass. You can also:

 Add new properties

 Add new methods

 Override the methods of the superclass

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Overloading means to define multiple methods with the same name but

different signatures.

Overriding means to provide a new implementation for a method in the

subclass.

28

Overriding vs. Overloading

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
27

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
28

Calling Superclass Methods

You could rewrite the printCircle() method in the Circle class as

follows: (both are correct)

public void printCircle() {

System.out.println("The circle is created " +

super.getDateCreated() + " and the radius is " + radius);

}

public void printCircle() {

System.out.println("The circle is created " +

getDateCreated() + " and the radius is " + radius);

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

NOTE

An instance method can be overridden only

30

if it is accessible. Thus a private method

cannot be overridden, because it is not

accessible outside its own class. If a

method defined in a subclass is private in

its superclass, the two methods are

completely unrelated.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

NOTE

Like an instance method, a static method can

be inherited. However, a static method cannot

be overridden. If a static method defined in

the superclass is redefined in a subclass, the

method defined in the superclass is hidden.

The hidden static methods can be invoked using the

syntax SuperClassName.staticMethodName.

31

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Check Point
True or false? A subclass is a subset of asuperclass.

False.

A subclass is an extension of a superclass and normally contains

more details information than its superclass.

What keyword do you use to define a subclass?

The extends keyword is used to define a subclass that extends a

superclass.

What is single inheritance? What is multiple inheritance? Does Java

support multiple inheritance?

Single inheritance allows a subclass to extend only one superclass.

Multiple inheritance allows a subclass to extend multiple classes.

Java does not allow multiple inheritance.

34

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

The Object Class and Its Methods

Every class in Java is descended from the

java.lang.Object class. If no inheritance is

specified when a class is defined, the

superclass of the class is Object.

public class Circle {

...

}

Equivalent
extends Object

35

{public class Circle

...

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

The toString() method in Object

36

The toString() method returns a string representation of the
object. The default implementation returns a string consisting
of a class name of which the object is an instance, the at sign
(@), and the object’s memory address in hexadecimal.

Loan loan = new Loan();

System.out.println(loan.toString());

The code displays something like Loan@15037e5 . This

message is not very helpful or informative. Usually you should
override the toString method so that it returns a digestible string
representation of the object.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

toString

34

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

toString

35

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Polymorphism

39

Polymorphism means that a variable of a supertype

can refer to a subtype object.

A class defines a type. A type defined by a
subclass is called a subtype, and a type defined by
its superclass is called a supertype. Therefore, you
can say that Circle is a subtype of
GeometricObject and GeometricObject is a
supertype for Circle.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Polymorphism

Every instance of a subclass is also an

instance of its superclass, but not vice versa

For example, every circle is a geometric

object, but not every geometric object is a

circle. Therefore, you can always pass an

instance of a subclass to a parameter of its

superclass type.

37

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Liang, Introduction to Java Programming, Tenth E

rights reser
dit

ve

Polymorphism

ion, (c) 2013 Pearson Education, Inc. All

d. 40

Hello, From C

Hello, FromA

Hello, From B

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Generic Programming

44

public class PolymorphismDemo {

public static void main(String[] args) {

m(new GraduateStudent());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out.println(x.toString());

}

}

class GraduateStudent extends Student {

}

class Student extends Person {

public String toString() {

return "Student";

}

}

class Person extends Object {

public String toString() {

return "Person";

}

}

Polymorphism allows methods to be used

generically for a wide range of object

arguments. This is known as generic

programming. If a method’s parameter

type is a superclass (e.g., Object), you may

pass an object to this method of any of the

parameter’s subclasses (e.g., Student or

String). When an object (e.g., a Student

object or a String object) is used in the

method, the particular implementation of

the method of the object that is invoked

(e.g., toString) is determined dynamically.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Casting Objects
You have already used the casting operator to convert variables of

one primitive type to another. Casting can also be used to convert an

object of one class type to another within an inheritance hierarchy. In

the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type.

This statement is equivalent to:

Object o = new Student(); // Implicit casting m(o);

The statement Object o = new Student(), known as implicit casting, is legal because an

instance of Student is automatically an instance of Object.

45

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Why Casting Is Necessary?
Suppose you want to assign the object reference o to a variable of the
Student type using the following statement:

Student b = o;

A compile error would occur. Why does the statement Object o =
new Student() work and the statement Student b = o doesn’t? This is
because a Student object is always an instance of Object, but an
Object is not necessarily an instance of Student. Even though you can
see that o is really a Student object, the compiler is not so clever to
know it. To tell the compiler that o is a Student object, use an explicit
casting. The syntax is similar to the one used for casting among
primitive data types. Enclose the target object type in parentheses and
place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

46

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

The instanceof Operator

48

Use the instanceof operator to test whether an object is

an instance of a class:

Object myObject = new Circle();

... // Some lines of code

/** Perform casting if myObject is an instance of
Circle */

if (myObject instanceof Circle) {

System.out.println("The circle diameter is " +

((Circle)myObject).getDiameter());

...

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved. 49

true true false true true

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
44

TIP

To help understand casting, you may also
consider the analogy of fruit, apple, and
orange with the Fruit class as the superclass
for Apple and Orange. An apple is a fruit, so
you can always safely assign an instance of
Apple to a variable for Fruit. However, a
fruit is not necessarily an apple, so you have
to use explicit casting to assign an instance
of Fruit to a variable of Apple.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

The equals Method
The equals() method compares the

contents of two objects. The default implementation of the

equals method in the Object class is as follows:

public boolean equals(Object obj) {

return this == obj;
}

For example, the equals

method is overridden in

the Circle class.

public boolean equals(Object o) { if (o

instanceof Circle) {

return radius == ((Circle)o).radius;

}

else

return false;

}

This

implementation

checks whether

two reference

variables point to

the same object

using

the == operator

52

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
46

NOTE
The == comparison operator is used for

comparing two primitive data type values or for

determining whether two objects have the same

references. The equals method is intended to

test whether two objects have the same

contents, provided that the method is modified

in the defining class of the objects. The ==

operator is stronger than the equals method, in

that the == operator checks whether the two

reference variables refer to the same object.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Example: equals

false

true

54

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

The ArrayList Class
You can create an array to store objects. But the array’s size is fixed

once the array is created. Java provides the ArrayList class that can

be used to store an unlimited number of objects.

java.util.ArrayList<E>

+ArrayList()

+add(o: E) : void

+add(index: int, o: E) : void

+clear(): void

+contains(o: Object): boolean

+get(index: int) : E

+indexOf(o: Object) : int

+isEmpty(): boolean

+lastIndexOf(o: Object) : int

+remove(o: Object): boolean

+size(): int

+remove(index: int) : boolean

+set(index: int, o: E) : E

Creates an empty list.

Appends a new element o at the end of this list.

Adds a new element o at the specified index in this list.

Removes all the elements from this list. Returns true if

this list contains the element o.

Returns the element from this list at the specified index.

Returns the index of the first matching element in this list.

Returns true if this list contains no elements.

Returns the index of the last matching element in this list.

Removes the element o from this list.

Returns the number of elements in this list. Removes the

element at the specified index. Sets the element at the

specified index.

An
ArrayList

object can

be used to

store a list

of objects.

55

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Generic Type

ArrayList is known as a generic class with a generic

type E. You can specify a concrete type to replace E

when creating an ArrayList. For example, the

following statement creates an ArrayList and assigns

its reference to variable cities. This ArrayList object

can be used to store strings.

ArrayList<String> cities = new ArrayList<String>();

ArrayList<String> cities = new ArrayList<>();

56

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
50

Differences and Similarities between

Arrays and ArrayList

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] ArrayList<String> list = new ArrayList<>();

Accessing an element a[index] list.get(index);

Updating an element a[index] = "London"; list.set(index, "London");

Returning size a.length list.size();

Adding a new element list.add("London");

Inserting a new element list.add(index, "London");

Removing an element list.remove(index);

Removing an element list.remove(Object);

Removing all elements list.clear();

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Example

58

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Check Point
Suppose you want to create an ArrayList for storing integers. Can

you use the following code to create a list?
ArrayList<int> list = new ArrayList<int>();

No. This will not work because the elements stored in an ArrayList

must be of an object type. You cannot use a primitive data type such

as int to replace a generic type. However, you can create an

ArrayList for storing Integer objects as follows:

ArrayList<Integer> list = new ArrayList<Integer>();

59

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.
60

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Array Lists from/toArrays
Creating an ArrayList from an array of objects:

String[] array = {"red", "green", "blue"};

ArrayList<String> list = new ArrayList<>(Arrays.asList(array));

Creating an array of objects from an ArrayList:

String[] array1 = new String[list.size()]; list.toArray(array1);

62

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

max and min in an Array List

String[] array = {"red", "green", "blue"};

System.out.pritnln(java.util.Collections.max(new

ArrayList<String>(Arrays.asList(array)));

String[] array = {"red", "green", "blue"};

System.out.pritnln(java.util.Collections.min(

new ArrayList<String>(Arrays.asList(array)));

63

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Shuffling an Array List

64

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};

ArrayList<Integer> list = new

ArrayList<>(Arrays.asList(array));

java.util.Collections.shuffle(list);

System.out.println(list);

[95, 4, 5, 6, 34, 3, 5, 15, 3]

[6, 5, 5, 4, 3, 15, 3, 34, 95]

[6, 3, 4, 95, 15, 3, 5, 34, 5]

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

The protected Modifier

The protected modifier can be applied on
data and methods in a class. A protected data or a
protected method in a public class can be accessed
by any class in the same package or its subclasses,
even if the subclasses are in a different package.

private, default, protected, public

Visibility increases

private, none (if no modifier is used), protected, public

67

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Accessibility Summary

Modifier

on members

in a class

Accessed

from the

same class

Accessed

from the

same package

Accessed

from a

subclass

Accessed

from a different

package

public

protected -

default - -

private - - -

68

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Visibility Modifiers

public class C1 {

public int x; protected

int y; int z;

private int u;

protected void m() {

}

}

C1 o = new C1();

public class C2 {

can access o.x; can

access o.y; can access

o.z; cannot access

o.u;

can invoke o.m();

}

public class C3

extends C1 {

can access x;

can access y;

can access z;

cannot access u;

can invoke m();

}

package p1;

public class C4

extends C1 {

can access x;

can access y;

cannot access z;

cannot access u;

can invoke m();

}

package p2;

C1 o = new C1();

public class C5 {

can access o.x; cannot

access o.y; cannot

access o.z; cannot

access o.u;

cannot invoke o.m();

}

69

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

A Subclass Cannot Weaken the Accessibility

A subclass may override a protected

method in its superclass and change its

visibility to public. However, a subclass

cannot weaken the accessibility of a

method defined in the superclass. For

example, if a method is defined as public in

the superclass, it must be defined as public

in the subclass.

70

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

NOTE

The modifiers are used on classes and

class members (data and methods), except

that the final modifier can also be used on

local variables in a method. A final local

variable is a constant inside a method.

71

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

The final Modifier

72

The final class cannot be extended:

final class Math {

...

}

The final variable is a constant:

final static double PI = 3.14159;

The final method cannot be

overridden by its subclasses.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Check Point

73

How do you prevent a class from being

extended? How do you prevent a method from

being overridden?

Use the final keyword.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Check Point

Indicate true or false for the following statements:

a.A protected data field or method can be accessed by any class in the same package.

b.A protected data field or method can be accessed by any class in different packages.

c.A protected data field or method can be accessed by its subclasses in any package.

d.A final class can have instances.

e.A final class can be extended.

f.A final method can be overridden.

g.True.

h.False. (But yes in a subclass that extends the class where the protected

data field is defined.)

i.True.

j.Answer: True

k.Answer: False

l.Answer: False

74

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Review of concepts

75

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Inheritance

Allow us to specify relationships between

types

– Abstraction, generalization, specification

– The “is-a” relationship

– Examples?

Why is this useful in programming?

– Next slide

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Why useful: Code Reuse

General functionality can be written once and

applied to *any* subclass

Subclasses can specialize by adding members

and methods, or overriding functions

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Inheritance Basics

 Inheritance allows programmer to define a

general class (superclass)

 Later you define a more specific class (subclass)

– Adds new details to general definition

 New class inherits all properties of initial,

general class

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Superclasses and Subclasses
GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

The setColor and setFilled methods to

set the color and filled properties.

These two public methods are defined

in the base class GeometricObject and

are inherited in Circle and Rectangle,

so they can be used in the derived

class.

80

