Chapter 11 Inheritance and
Polymorphism

Dr. Asem Kitana
Dr. Abdallah Karakra

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

b/

_'

Inheritance

Suppose you will define classes to model circles,
rectangles, and triangles. These classes have many
common features. What 1s the best way to design
these classes so to avoid redundancy? The answer
1s to use inheritance.

A\

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 ?
Pearson Education, Inc. All rights reserved.

Superclasses and Subclasses

» Inheritance enables you to define a general class
(1.e., a superclass) and later extend 1t to more
specialized classes (1.e., subclasses).

» A triangular arrow pointing to the superclass 1s
used to denote the inheritance relationship
between the classes involved. \

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 ?
Pearson Education, Inc. All rights reserved.

GeometricObject

-color: String
-fil1led: boolean

-dateCreated: java.util.Date

+CGeometricObject ()

+GeometricObject(color: String,
filled: boolean)
+getColor(): String

+setColor(color: String): void
+isFilled(Q: boolean
+setFilled(filled: boolean): wvoid
+getDateCreated(): java.util.Date
+toString(): String

The color of the object (default: whi te).
Indicates whether the object is filled with a color {default: false).
The date when the object was created.

Creates a GeometricObject.

Creales a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the £111ed property.

Sels a new 11 1ed property.

Returns the dateCreated.

Returns a string representation of this objecl

= %

-radius: double

+Circle)
+Circle{radius: double)

+Circle{radius: double, color: String,
filled: boolean)

+getRadius(): double
+setRadius(radius: doublel: woid
+getArea() : double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): woid

-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height:

+Rectangle(width: double, height:
color: String, filled: boolean)

+getWidth(): double
+setWidth{width: double): wvoid
+getHeight(): double
+setHeight(height: double): woid
+getAreal() : double
+getPerimeter(): double

double)
double

Fedisorl Cuucduorl, 1c. All NYriLs reseivea.

public class Person {
private String name; General
private int age;
// constructor
public String getName () {return name;}
public void setName (String name) {this.name=name; }

public int getAge () {return age;}
public void setAge(int age) {this.age=age;}

yd
public class Student extends Person { private irst
studentNumber;
//constructor
public 1nt getStudentNumber () {return studentNumber;}

public void setStudentNumber (1nt studentNumber)
{this.studentNumber = studentNumber; }

public class Person {
private String name; General
private 1int age;
// constructor
public String getName () {return name;}
public void setName (String name) {this.name=name; }

public int getAge () {return age;}
public void setAge (int age) {this.age=age; }

}

public class Employee extends Person {
private double salary;

private String departmentName;

public double getSalary () {return salarvy;}

specific
class

/

public void setSalary(double salary) {this.salary =salary;}
public String getDepartmentName () {return departmentName; }

public void setDepartmentName (String departmentName)
{this.departmentName = departmentName; }

}

Are superclass’s Constructor

Inherited?

No. They are not inherited.
They are invoked explicitly or implicitly. Explicitly using
the super keyword.

A constructor 1s used to construct an instance of a class.
Unlike properties and methods, a superclass's

constructors are not inherited in the subclass. They can

only be invoked from the subclasses' constructors, usin \
the keyword super. If the keyword super is not explicitl
used, the superclass S no-arg constructor is

automatically invoked.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 B
Pearson Education, Inc. All rights reserved.

public class Person {
private String name;
private int age:;
public Person|()
name "No
age=0;

{

name

vet™;

1-
J

public Person(String name,

this.name
thi=.age

name ;
age;

b

int age) {

this(“No name yet”,0
= (yet”,0)

el

public String getName () {return name;:
public void setName (String name) {this.name = name;}
public int getage () { return age; :
public void setAge(int age) { this.age = age:;}
public void writeCutput () {

System.out.println("Name: " 4+ name + "Lge: "+age)]

public class Student extends Person i TE————— T pe——

public void =setName (String name) {this.name = name;}

private int studentNumber;
public Student () { public int getAge() { return age;}
super ()
studentNumber = 0; /[Indicating

public woid setiAge (int age) { this.age = age;}

public wvolid writeOutput ()
System.out.println("Name: " + name + "Age: "+age):;

public Student [(5tring name,int age ,1int studentNumber) |
super (name,age):;
thi=.studentNumber = studentNumber;

public void reset (String name, int age ,int studentNumber) {
setNHame (name):;
setAge (age) ;
this.studentNumber = studentNumber:

public int getStudentHumber () {return studentNumber;}

public void setStudentNumber (int studentNumber) {this.studentNumber = studentNumber;:

public void writeoutput [)

System.out.println ("Hame: " + getName()):
System.out.println ("Rge: " + gethAge()):
System.out.println ("Student Humber: " + studentNumber) ;

Using the Keyword super

The keyword super refers to the superclass
of the class in which super appears. This
keyword can be used in two ways:

Q To call a superclass constructor

Q To call a superclass method

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

calling a superclass constructor

» The syntax to call a superclass’s constructor is:
super(), or super(parameters)

> The statement super() invokes the no-arg
constructor of its superclass, and the statement
super(arguments) invokes the superclass
constructor that matches the arguments.

> The statement super() or super(arguments) \
must be the first statement of the subclass’s
constructor.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 IP
Pearson Education, Inc. All rights reserved.

Superclass’s Constructor Is Always

Invoked

A constructor may invoke an overloaded constructor OF
its superclass’s constructor. If none of them is invoked
explicitly, the compiler puts super() as the first statement
in the constructor. For example,

public A() {
}

1s equivalent to

public A(double d)

{

// some statements 1s equivalent to

>

public A(
super ()

}

) A

public A(double d)

super () ;

// some statements

{

N\

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

CAUTION

You must use the keyword super to call the
superclass constructor. Invoking a

superclass constructor’s name 1n a subclass
causes a syntax error. Java requires that the
statement that uses the keyword super
appear first in the constructor. \

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 1?
Pearson Education, Inc. All rights reserved.

Constructor Chaining

Constructing an instance of a class invokes all the superclasses’ constructors

along the inheritance chain. This is known as constructor chaining.
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println(" (4) Faculty's no—-arg constructor is invoked");
}
}

class Employee extends Person ({
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—arg constructor is invoked");

}

public Employee (String s) {
System.out.println(s);
}
}

class Person {
public Person() ({
System.out.println(" (1) Person's no—arg constructor is invoked");

}

} Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 ?
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {

¢ [

ublic static void main(String[] arxgs
= new Faculty () ; 2 . 1. Start from the
} main method

public Faculty() {
System.out.println(" (4) Faculty's no—-arg constructor is invoked");
}
}

class Employee extends Person ({
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—-arg constructor is invoked");

}

public Employee (String s) {
System.out.println(s);
}
}

class Person {
public Person() ({
System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {

ublic static void main(String[] args) { (
new Faculty(); 2. Invoke Faculty

} T constructor

ublic Facult
System.out.println(" (4) Faculty's no—-arg constructor is invoked");

}

}

class Employee extends Person ({
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—-arg constructor is invoked");

}

public Employee (String s) {
System.out.println(s);
}
}

class Person {
public Person() ({
System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {
ublic static void main(String[] args) {
new Faculty();

}

ublic Facult
System.out.println(" (4) Faculty's no—-arg constructor is invoked");

}
} (3. Invoke Employee’s no-

arg constructor

class Employee extends Person {
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—-arg constructor is invoked");

}

public Employee (String s) {
System.out.println(s);

) \
}
class Person {
public Person() ({
System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {
ublic static void main(String[] args) {
new Faculty();

}

ublic Facult
System.out.println(" (4) Faculty's no—-arg constructor is invoked");

}

} (4. Invoke Employee(String)

class Employee extends Person ({

constructor
public Employee () { ‘//”/////\

this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—-arg constructor is invoked");

}

public Employee (String s) {
System.out.println(s);

) \
}
class Person {
public Person() ({
System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {
ublic static void main(String[] args) {
new Faculty();

}

ublic Facult
System.out.println(" (4) Faculty's no—-arg constructor is invoked");

}

}

class Employee extends Person ({

public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—-arg constructor is invoked");

}

public Employee (String s) {
System.out.println(s);

}
} 5. Invoke Person() constructor

class Person {
public Person() {
System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 ?
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {
ublic static void main(String[] args) {
new Faculty();

}

ublic Facult
System.out.println(" (4) Faculty's no—-arg constructor is invoked");

class Employee extends Person ({

public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—-arg constructor is invoked");

public Employee (String s) {
System.out.println(s);
}

} (6. Execute println

class Person {

public Person() { ‘////’////\

System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {
ublic static void main(String[] args) {
new Faculty();

}

ublic Facult
System.out.println(" (4) Faculty's no—-arg constructor is invoked");

class Employee extends Person ({

public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—-arg constructor is invoked");

public Employee (String s) {
System.out.println(s);

}

7. Execute println
class Person {

public Person() ({
System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {
ublic static void main(String[] args) {
new Faculty();

}

ublic Facult
System.out.println(" (4) Faculty's no—-arg constructor is invoked");

class Employee extends Person ({

public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—arg constructor is invoked");

public Employee (String s) {
System.out.println(s);
}

8. Execute println
class Person {

D\

public Person() ({
System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

animation

Trace Execution

public class Faculty extends Employee {
ublic static void main(String[] args) {
new Faculty();

}

public Faculty () {
System.out.println(" (4) Faculty's no—-arg constructor is invoked") |

}

}

9. Execute println
class Employee extends Person ({

public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no—-arg constructor is invoked");

}

public Employee (String s) {
System.out.println(s);

) \
}
class Person {
public Person() ({
System.out.println(" (1) Person's no—arg constructor is invoked");

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

Example on the Impact of a Superclass

without no-arg Constructor
Design Guide If

possible, you

Find out the errors in the program: should provide a
public class Apple extends Fruit [no-arg constructor
} for every class to
make the class
class Fruit { easy to extend and
public Fruit (String name) { to avoid errors
System.out .println ("Fruit's constructor is invoked");
}
}

Since no constructor is explicitly defined in Apple, Apple’s default no-arg constructor is
defined implicitly. Since Apple is a subclass of Fruit, Apple’s default constructor automatically
invokes Fruit’s no-arg constructor. However, Fruit does not have a

no-arg constructor, because Fruit has an explicit constructor defined. Therefore, the

program cannot be compiled.

)

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 m
Pearson Education, Inc. All rights reserved.

Defining a Subclass

A subclass 1nherits from a superclass. You can also:
Q Add new properties
QO Add new methods

Q Override the methods of the superclass

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 ?

Pearson Education, Inc. All rights reserved.

Overriding vs. Overloading

Overloading means to define multiple methods with the same name but
different signatures.

Overriding means to provide a new implementation for a method in the

subclass.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 -28
Pearson Education, Inc. All rights reserved.

Overriding vs. Overloading

public class Test |
public static void main(String[] args)

L a=new A();
a.p(l0);
a.p(10.0);
}
}

class B |
public void p(double 1) {
System.ocut.println(i * 2);
}
}

class L extends B |

public void p(double 1) {
System.out.println (i) ;

}

{

public class Test {
public static wvoid main(String[] args) {
L a=new A();
a.p(l0);
a.p(10.0);
}
}

class B |
public void p(double 1) {
System.ocut.println(i *

}

2} ;
}

class L extends B |

— L LG o

public void p(int 1) {
3ystem.out.println(i);

}

Output
10.0
10.0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

Output
10
20.0

Calling Superclass Methods

You could rewrite the printCircle() method 1n the Circle class as
follows: (both are correct)

public void printCircle() {
System.out.println("The circle 1s created " +
getDateCreated() + " and the radius is " + radius);

}

public void printCircle() {
System.out.println("The circle is created " +
super.getDateCreated() + " and the radius 1s " + radius);

J

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

NOTE

An 1nstance method can be overridden only
1f 1t 1s accessible. Thus a private method
cannot be overridden, because it 1s not
accessible outside i1ts own class. If a
method defined in a subclass is private in
its superclass, the two methods are \
completely unrelated.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

NOTE

Like an 1instance method, a static method can
be inherited. However, a static method cannot
be overridden. If a static method defined 1n
the superclass 1s redefined 1n a subclass, the
method defined 1n the superclass 1s hidden.

The hidden static methods can be invoked usin
syntax SuperClassName.staticMethodName.

c

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 ."1
Pearson Education, Inc. All rights reserved.

Check Point

True or false? A subclass 1s a subset of asuperclass.

What keyword do you use to define a subclass?

What 1s single inheritance? What 1s multiple inheritance? Does Java
support multiple inheritance?

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

The Object Class and Its Methods

Every class in Java 1s descended from the
Jjava.lang.Object class. If no inheritance 1s

specified when a class 1s defined, the
superclass of the class 1s Object.

public class Circle {

}

Equivalent

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

public class Circle extends Object {

}

4

-

The toString() method in Object

The toString() method returns a string representation of the
object. The default implementation returns a string consisting
of a class name of which the object is an instance, the at sign
(@), and the object’s memory address in hexadecimal.

Loan loan = new Loan();

System.out.println(loan.toString());

The code displays something like Loan @ 15037e5 . This \

message is not very helpful or informative. Usually you should
override the toString method so that it returns a digestible string
representation of the object.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 -6
Pearson Education, Inc. All rights reserved.

toString

{
(tring [] angs) {
testObiect = ney Test();

out.printIn(testObiect. toString());

toString

{
(String [] args)
testObject = new Test():
.out.printIn(testObject.toString());

Polymorphism

Polymorphism means that a variable of a supertype
can refer to a subtype object.

A class defines a type. A type defined by a

subclass 1s called a subtype, and a type defined by
its superclass 1s called a supertype. Therefore, you
can say that Circle is a subtype of
GeometricObject and GeometricObject is a \
supertype for Circle.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 - 39
Pearson Education, Inc. All rights reserved.

Polymorphism

Every instance of a subclass 1s also an
instance of 1ts superclass, but not vice versa

For example, every circle 1s a geometric

object, but not every geometric object is a

circle. Therefore, you can always pass an \
instance of a subclass to a parameter of 1ts
superclass type.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 :P
Pearson Education, Inc. All rights reserved.

public class Test{

public static wvoid main (String [Jargs){
D d= new D();
C c= new C();

a=new A();

b =new B();

-poly(c);

-poly(a);

-poly(b);.

(S = E w E s B

}
class A extends C{

public void print(}{
System.out.println("Hello, From A");
¥
IIESS——
class B extends C{

public wvoid print()q{

System.out.println("Hello, From B");

¥

ks
class C {

public void print(){
System.out.println("Hello,
I

From C");

Polymorphism

Hello, From C
Hello, From A
Hello, From B

N\

class D {

public void poly (C obj){
obj.print();
¥

} B

Generic Programming

public class PolymorphismDemo {

public static void main(String[] args) {
m(new GraduateStudent ());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out .println(x.toString());
}

}

class GraduateStudent extends Student {

}

class Student extends Person {
public String toString() {
return "Student'";

}

}

class Person extends Object {
public String toString() {
return "Person'";

}

Polymorphism allows methods to be used
generically for a wide range of object
arguments. This is known as generic
programming. If a method’s parameter
type 1s a superclass (e.g., Object), you may
pass an object to this method of any of the
parameter’s subclasses (e.g., Student or
String). When an object (e.g., a Student
object or a String object) is used in the
method, the particular implementation of
the method of the object that is invoked
(e.g., toString) is determined dynamigally.

Student
Student
Person

java.lang.0Object@li0cl9b

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

Casting Objects

You have already used the casting operator to convert variables of
one primitive type to another. Casting can also be used to convert an
object of one class type to another within an inheritance hierarchy. In
the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type.
This statement 1s equivalent to:

Object 0 = new Student(); m(0); \
The statement Objem), known as implicit casting, is legal because a
instance of Student is automatically an instance of Object.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 R
Pearson Education, Inc. All rights reserved.

Why Casting Is Necessary?

Suppose you want to assign the object reference o to a variable of the
Student type using the following statement:

A compile error would occur. Why does the statement Object o =
new Student() work and the statement Student b = 0 doesn’t? This 1s
because a Student object 1s always an instance of Object, but an
Object is not necessarily an instance of Student. Even though you can
see that o 1s really a Student object, the compiler 1s not so clever to
know it. To tell the compiler that o 1s a Student object, use an expfhg i’t
casting. The syntax 1s similar to the one used for casting among
primitive data types. Enclose the target object type in parenthese
place it before the object to be cast, as follows:

St@mdent)o; // Explicit casb [/

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 R
Pearson Education, Inc. All rights reserved.

The instanceof Operator

Use the instanceof operator to test whether an object 1s
an instance of a class:

Object myObject = new Circle();
// Some lines of code

/** Perform casting if myObject is an instance of
Circle */

if (myObject instanceof Circle) {
System.out .println("The circle diameter is " +
((Circle)myObject) .getDiameter());

“\

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 k

Pearson Education, Inc. All rights reserved.

public class Test{

pubklic static void main (5tring args) {
Chiject ob]j= new Circle();
Circle cl = new Circle();
Rectangle rect = new ERectangle ():;

Shape sh =new Rectangle():
boolean res=ob] instanceof Circle;

boolean resZ=rect instanceof Rectangle;
boolean res3=ob] instanceof Rectangle;

boolean res4=cl instanceof Cbject:
boolean resS=cl instanceof Shape;
System.out.println(res+ " "+ reszZ+ "

clas=s Shape

class Circle extends Shape

class Rectangle extends Shaped

"+res3+ " "+resd+ " "+reslh);

true true false true true

TIP

To help understand casting, you may also
consider the analogy of fruit, apple, and
orange with the Fruit class as the superclass
for Apple and Orange. An apple 1s a fruit, so
you can always safely assign an instance of
Apple to a variable for Fruit. However, a

fruit 1s not necessarily an apple, so you hag
to use explicit casting to assign an 1nstance

of Fruit to a variable of Apple.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 4?
Pearson Education, Inc. All rights reserved.

The equals Method

The equals () method compares the

contents of two objects. The default implementation of the
equals method 1n the Object class 1s as follows:

public boolean equals(Object obj) {
return this == obj;

} k

public boolean equals(Object o) { if
instanceof Circle) {

return radius == ((Circle)o) .radius;
}

else
return false;

}

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

NOTE

The == comparison operator 1s used for
comparing two primitive data type values or for
determining whether two objects have the same
references. The equals method 1s intended to
test whether two objects have the same
contents, provided that the method 1s moditfied
in the defining class of the objects. The ==
operator 1s stronger than the equals method,
that the == operator checks whether the two
reference variables refer to the same object.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 4P
Pearson Education, Inc. All rights reserved.

Examnle

public class TestEquals{
public static void main (String [] args){

Circle cl= new Circle (3);
Circle c2= new Circle (3);
Rectangle rl= new Rectangle (1,2);
Rectangle r2= new Rectangle (1,2);
System.out.println(cl.equals(c2));
System.out.println(rl.equals(r2));

- eanalsg

class Circleq
private double radius;
[/S5etter && getter Method
public Circle (double radius){

this.radius=radius;

class Rectangle {

private double length,width;

public Rectangle (double length, double width){
this.length=length;
this.width=width;

¥

public boolean equals (Object o){
if (o instanceof Rectangle){

if (this.length== ((Rectangle)o).length && this.width== ((Rectangle)o).width)

return true;

¥

return false;

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

The Arrayl.ist Class

You can create an array to store objects. But the array’s size 1s fixed
once the array 1s created. Java provides the ArrayList class that can
be used to store an unlimited number of objects.

An
ArrayList

object can
be used to
store a list
of objects.

java.util.ArrayList<E>

+ArrayList ()

+add(o: E) : void

+add(index: int, o: E) : void
+clear () : void

+contains(o: Object): boolean

Creates an empty list.

Appends a new element o at the end of this list.
Adds a new element o at the specified index in this list.
Removes all the elements from this list. Returns true if

this list contains the element o.

+get (index: int) : E Returns the element from this list at the specified index.
+indexOf (o: Object) : int Returns the index of the first matching element in this list.
+isEmpty () : boolean Returns true if this list contains no elements.
+lastIndexOf (o: Object) : int Returns the index of the last matching element in this list.
+remove (o: Object): boolean Removes the element o from this list.
+size(): int Returns the number of elements in this list. Removes the
tremove (index: int) : boolean element at the specified index. Sets the element at the
+set (index: int, o: E) : E specified index.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 R

Pearson Education, Inc. All rights reserved.

Generic Type

ArraylList 1s known as a generic class with a generic
type E. You can specify a concrete type to replace E
when creating an ArrayList. For example, the
following statement creates an ArrayList and assigns
its reference to variable cities. This ArrayList object
can be used to store strings.

ArrayList<String> cities = new ArrayList<String>,K

ArrayList<String> cities = new ArrayList<>();

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 k
Pearson Education, Inc. All rights reserved.

Diftferences and Similarities between
Arrays and ArrayList

Operation Array ArraylList

Creating anarray/Arrayliist String[] a = new String[10] ArrayList<String> list = new ArrayList<>();
Accessing an element alindex] list.get (index);

Updating an element alindex] = "London"; list.set(index, "London") ;

Retuming size a.length list.size () ;

Adding anew element
Insertinga new element
Removing an element
Removing an element

Removing all elements

list.add("London") ;
list.add (index, "London") ;
list .remove(index) ;

list .remove(Cbject);

list.clear();

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved. ! E

Example

import java.util.Arraylist;
public class TestArrayList{

public static void main(5tring []args){
Arraylist<String> list = new ArraylList<String>(); // []
System.out.println(list.size()); //@
list.add("Hello"); // [Hello]
list.add("Hi"}); // [Hello,Hi]
System.out.println("Size is "+list.size() +list);//Size is 2[Hello, Hi]
list.add(1, "welcome™);//[Hello,welcome,Hi]
System.out.println("Size is "+list.size() +list);//5ize is 3[Hello, welcome, Hi]
list.set(1,"5alam"™);//{Hello, Salam, Hi}
System.out.println("Size is "+list.size() +list);//Size is 3[Hello, 5alam, Hi]
String s = list.get(@);//Hello
System.out.println(s);//Hello
list.remove("Hi");//[Hello, Salam]
System.out.println("Size is "+list.size() +list);
list.clear();//[]
System.out.println(“Size is "+list.size() +list);//Size is @[]

Check Point

Suppose you want to create an ArrayList for storing integers. Can

you use the following code to create a list?
ArrayList<int> list = new ArrayList<int>();

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

LisTING 11.9 DistinctNumbers.java

1 1import java.util.ArraylList;
2 1mport java.util.Scanner;

public class DistinctNumbers {

public static void main(String[] args) {
ArrayList<Integer> list = new ArraylList<Integer>();

Scanner input = new Scanner(System.in);
System.out.print("Enter integers (input ends with 0): ");
int value;

do {
value = input.nextInt(); // Read a value from the input

if (!list.contains(value) && value != 0)
list.add(value); // Add the value if it 1s not in the list
} while (value != 0);

// Display the distinct numbers
for (int i = 0; i < list.sizeQ : i++)
System.out.print(list.get(i) + " ");

Enter numbers (input ends with 0): 12 3 216 345451230 |-Enw
The distinct numbers are: 1 2 3 6 4 5

Array Lists from/to Arrays

Creating an ArrayList from an array of objects:

String[] array = {"'red"’, '"'green'’, "'blue"' };

ArrayList<String> list = new ArrayList<>(Arrays.asList(array));

Creating an array of objects from an ArraylList:

String[] arrayl = new String[list.size()]; list.toArray(arrayl);

import java.util.Arraylist;
import java.util.Arrays;
public class HelloWorld{

public static void main(5tring []Jargs){
String [] obj = {"Hello","Hi", "Welcome"};
ArraylList <String» list = new ArraylList <>(Arrays.asList(obij));
System.out.println(list); //[Hello, Hi, Welcome]

max and min in an Array List

String[] array = {''red"", "'green'’, "'blue" };

System.out.pritnln(java.util.Collections.max(new

ArrayList<String>(Arrays.asList(array)));

String[] array = {"'red"’, ''green'’, "'blue" };

System.out.pritnln(java.util.Collections.min(

new ArrayList<String>(Arrays.asList(array)));

— -
Import java.util.ArraylList;
Import java.util.Arrays;
ppublic class Hellokworld{
public static void main{(sString [Jargs){
String [] obj = {"Hello" ,"H1i","Welcome™};
ArraylList «<String> list = new ArraylList <>{Arrays.aslList(obj));

System.out.println{list); //[Hello, Hi, Welcome]
System.out.println{java.util.Collections.max{list}); ./ /Welcome
System.out.println{java.util.Collections.min{list)); ./ /Hello

¥ 63

Shuttling an Array List

Integer[] array = {3, 5, 95,4, 15,34, 3, 6, 5};

ArrayList<Integer> list = new
ArrayList<>(Arrays.asList(array));

java.util.Collections.shuffle(list);

System.out.println(list);

95,4, 5,6, 34, 3, 5, 15, 3]

6,5,5,4, 3,15, 3, 34, 95]

[6, 3, 4, 95, 15, 3, 5, 34, 5]

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

7/

The protected Modifier

The protected modifier can be applied on
data and methods 1n a class. A protected data or a
protected method WW
by any class in the same package or its subclases,
even if the subclasses are 1n a different package.

—_—~— ——
T~

private, default, protected, public

Visibility increases \
)

private, none (if no modifier is used), protected, public

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 R
Pearson Education, Inc. All rights reserved.

Accessibility Summary

Modifier Accessed Accessed Accessed Accessed

on members from the from the from a from a different

in a class same class same package subclass package

public 4 V4 o/ /

protected V4 4 o/ -

default \/ \/ - — \
private V4 - - -

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020

Pearson Education, Inc. All rights reserved.

Visibility Moditiers

package pl;
public class C1 { public class C2 {
public int x; protected Cl o = new C1();
int y; int z; can access 0.xX; can
private int u; access 0.y; Ccan access
0.2Z; cannot access
protected void m() { o.u;
}
} can invoke o.m() ;
}
AN
package p2;
I
public class C3 public class C4 public class C5 {
extends C1 { extends C1 { Cl o = new Cl1();
can access xj can access Xj can access 0.x; cannot
can access yj can access yj access 0.y; cannot

can access zj;
cannot access uj;

cannot access z;
cannot access ujy

access 0.2zZy cannot
access 0O.Uy

can invoke m(); can invoke m(); cannot invoke o.m();
. 4

} })

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 &
Pearson Education, Inc. All rights reserved.

A Subclass Cannot Weaken the Accessibility

A subclass may override a protected

method 1n 1ts superclass and change its
visibility to public. However, a subclass
cannot weaken the accessibility of a

method defined in the superclass. For
example, 1f a method 1s defined as public 1
the superclass, it must be defined as publiL\
in the subclass.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

3

NOTE

The modifiersjare used on classes and
class members (data and methods), except
that the(final |moditier can also be used on

local variables 1n a method. A final local
variable 1s a constant inside a method.

—_— ——
T

A\

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 ?
Pearson Education, Inc. All rights reserved.

The £final Modifier

The final class cannot be extended:
final class Math {

The £final variable 1s a constant:
final static double PI = 3.14159;

The final method cannot be
overridden by its subclasses.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

Check Point

How do you prevent a class from being

extended? How do you prevent a method from
being overridden?

Use the final keyword.
Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 ?
Pearson Education, Inc. All rights reserved.

Check Point

Indicate true or false for the following statements:

a.A protected data field or method can be accessed by any class in the same package.
b.A protected data field or method can be accessed by any class in different packages.
c.A protected data field or method can be accessed by its subclasses in any package.
d.A final class can have instances.

e.A final class can be extended.

f.A final method can be overridden.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

Review of concepts

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

Inheritance

Allow us to specity relationships between
types

— Abstraction, generalization, specification
— The *“1s-a” relationship

— Examples?

Why 1s this useful in programming?
— Next slide

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

Why useful: Code Reuse

General functionality can be written once and
applied to *any* subclass

Subclasses can specialize by adding members
and methods, or overriding functions

7/

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020
Pearson Education, Inc. All rights reserved.

Inheritance Basics

Q Inheritance allows programmer to define a
general class (superclass)

Q Later you define a more specific class (subclass)

— Adds new details to general definition

Q New class inherits all properties of initial,

general class \

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 -
Pearson Education, Inc. All rights reserved.

Superclasses and Subclasses

GeometricObject

-color: String
-filled: boolean

-dateCreated: java.util.Date

The color of the object (default: white).

The date when the object was created.

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

Creates a GeometricObject.

values.
Returns the color.
Sets a new color.

Returns the filled property.
Sets a new filled property.
Returns the dateCreated.

Returns a string representation of this object.

Z'L

Circle

Rectangle

-radius: double

-width: double

+Circle()
+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)
+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): void

-height: double

+Rectangle()
+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
color: String, filled: boolean)

+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void
+getArea(): double

+getPerimeter(): double

Indicates whether the object is filled with a color (default: false).

Creates a GeometricObject with the specified color and filled

The setColor and setFilled methods to
set the color and filled properties.
These two public methods are defined
in the base class GeometricObject and
are inherited in Circle and Rectangle,
so they can be used in the derived
class.

Liang, Introduction to Java Programming and Data Structures, Twelfth Edition, (c) 2020 8?
Pearson Education, Inc. All rights reserved.

