
Chapter 10 - Thinking in Objects

Dr. ASEM KITANA

Dr. ABDALLAH KARAKRA

Class Abstraction and Encapsulation

Class abstraction means to separate class implementation from the use of the
class. The creator of the class provides a description of the class and let the
user know how the class can be used. The user of the class does not need to
know how the class is implemented. The detail of implementation is
encapsulated and hidden from the user.

2

C la s s C o n tra c t

(S ig n a tu re s o f

p u b lic m e th o d s a n d

p u b lic c o n s ta n ts)

C la s s

C la s s im p le m en ta t io n

is lik e a b la c k b o x

h id d en fro m th e c lie n ts

C lie n ts u se th e

c la s s th ro u g h th e

c o n tra c t o f th e c la s s

Class Relationships

Association

Aggregation

Composition

Inheritance
(Later)

Association

Association is a general binary relationship that describes an activity between two classes

Examples:

a student taking a course is an association between the Student class and the Course
class

faculty member teaching a course is an association between the Faculty class and the
Course class

Association

This UML diagram shows that

1. a student may take any number of courses

2. a faculty member may teach at most three

courses

3. a course may have from five to sixty students

4. a course is taught by only one faculty member

a solid line
between
two
classes

Notes

An association is illustrated by a solid line between two classes with an optional
label

the labels are Take and Teach

Each relationship may have an optional small black triangle that indicates the
direction of the relationship

Each class involved in the relationship may have a role name that describes the role
it plays in the relationship. In previous Figure , teacher is the role name for Faculty.

Each class involved in an association may specify a multiplicity, which is placed
at the side of

the class to specify how many of the class’s objects are involved in the
relationship in UML

A multiplicity could be a number or an interval that specifies how many of the
class’s objects are involved in the relationship

The character * means an unlimited number of objects, and the interval m..n
indicates that the number of objects is between m and n, inclusively.

Association in Javacode

Association in Javacode

In Java code, you can implement associations by using data fields and
methods

The relation “a student takes a course” is implemented using:

the addCourse method in the Student class the

addStuent method in the Course class

The relation “a faculty teaches a course” is implemented using:

the addCourse method in the Faculty class the

setFaculty method in the Course class

Aggregation andComposition

Aggregation is a special form of association that represents an ownership relationship
between two objects.

Aggregation models has-a relationships

The owner object is called an aggregating object, and its class is called an aggregating class

The subject object is called an aggregated object, and its class is called an aggregated

class.

An object can be owned by several other aggregating objects

If an object is exclusively owned by an aggregating object, the relationship between the object
and its aggregating object is referred to as a composition

Examples(Aggregation andComposition)

• For example, “a student has a name” is a composition relationship
between the
• Student class and the Name class.

•whereas “a student has an address” is an aggregation relationship
between the Student class and the Address class, since an address
can be shared by several students

Examples(Aggregation andComposition)

a filled diamond is attached to an aggregating class (in this case, Student) to denote

the composition relationship with an aggregated class (Name).

an empty diamond is attached to an aggregating class (Student) to denote the

aggregation relationship with an aggregated class (Address).

Aggregation and Composition inJava code

Examples (Car & Engine)

Composition (engine just for

one car)

Examples (Car & Driver)

Aggregation (shared between more

than one
driver)

Wrapper class injava

provides the mechanism to convert primitive into object and object into

primitive

autoboxing and unboxing feature converts primitive into object and object

into primitive automatically. The automatic conversion of primitive into object
is known as autoboxing and vice-versa unboxing

Wrapper class injava
The eight classes of java.lang package are known as wrapper classes in java. The list of eight wrapper

classes are given
below

These classes are called wrapper classes because each wraps or encapsulates a primitive type value

in an object.

17

WrapperClasses

Boolean
Character
Short
Byte
 Integer
Long
Float
Double

NOTE:

(1)The wrapper classes do
not
have no-arg constructors.

(2)The instances of all
wrapper classes are

immutable, i.e., their

internal values cannot be
changed once the objects
are created.

18

The Integer and DoubleClasses

20

Examples

21

Examples

22

Numeric Wrapper ClassConstants

Each numerical wrapper class has the constants MAX_VALUE and MIN_VALUE.

MAX_VALUE represents the maximum value of the corresponding primitive data
type. For Byte, Short, Integer, and Long, MIN_VALUE represents the minimum
byte, short, int, and long values.

For Float and Double, MIN_VALUE represents the minimum positive float and
double values.

23

ConversionMethods

Each numeric wrapper class implements the
abstract methods doubleValue, floatValue,
intValue, longValue, and shortValue, which
are defined in the Number class.

These methods “convert” objects into
primitive type values.

24

The Static valueOfMethods

The numeric wrapper classes have a useful
class method, valueOf(String s).

This method creates a new object initialized to
the value represented by the specified string.

For example:

Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

25

The Methods forParsing Strings into Numbers

You have used the parseInt method in the
Integer class to parse a numeric string into an
int value and the parseDouble method in the
Double class to parse a numeric string into a
double value.

Each numeric wrapper class has two
overloaded parsing methods to parse a
numeric string into an appropriate numeric
value.

Automatic Conversion BetweenPrimitive

Types and Wrapper ClassTypes

JDK 1.5 allows primitive type and wrapper classes to be converted
automatically. For

example, the following statement in (a) can be simplified as in (b):

Integer[] arr = {1, 2, 3};

System.out.println(arr[0] + arr[1] + arr[2]);

Unboxing

27

BigInteger andBigDecimal

If you need to compute with very large
integers or high precision floating-
point values, you can use the
BigInteger and BigDecimal classes in
the java.math package.

Both are immutable.

28

BigInteger andBigDecimal

BigInteger a = new BigInteger("9223372036854775807");

BigInteger b = new BigInteger("2");

BigInteger c = a.multiply(b); // 9223372036854775807 * 2

System.out.println(c);

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal c = a.divide(b);

System.out.println(c);

