Chapter 10 - Thinking in Objects

Dr. ASEM KITANA
Dr. ABDALLAH KARAKRA



Class Abstraction and Encapsulation

Class abstraction means to separate class implementation from the use of the
class. The creator of the class provides a description of the class and let the
user know how the class can be used. The user of the class does not need to

know how the class is implemented. The detail of implementation is
encapsulated and hidden from the user.

Class implementation
is like a black box
hidden from the clients

Class Contract
(Signatures of Clients use the
public methods and €&——> class through the
public constants) contract of the class




Class Relationships

“*Association
<+ Aggregation
<*Composition

‘*Inheritance
(Later)




Assodation

Association is a general binary relationship that describes an activity between two classes

Examples:

Ca student taking a course is an association between the Student class and the Course
class

dfaculty member teaching a course is an association between the Faculty class and the
Course class



Association

Take p Teach 4
5.60 ) 0.3 1

Student | Course | Faculty |

Teacher

This UML diagram shows that
1. a student may take any number of courses

a solid line
2. a faculty member may teach at most three between
COurses two
classes

3. a course may have from five to sixty students
4. a course is taught by only one faculty member



Notes

CAn association is illustrated by a solid line between two classes with an optional
label

the labels are Take and Teach

JEach relationship may have an optional small black triangle that indicates the
direction of the relationship

JEach class involved in the relationship may have a role name that describes the role
it plays in the relationship. In previous Figure , teacher is the role name for Faculty.

CEach class involved in an association may specify a multiplicity, which is placed
at the side of

the class to specify how many of the class’s objects are involved in the

relationship in UML

A multiplicity could be a number or an interval that specifies how many of the
class’s objects are involved in the relationship

The character * means an unlimited number of objects, and the interval m..n
indicates that the number of objects is between m and n, inclusively.



Association in Javacode

public class Student { public class Course { public class Faculty {
private Coursel[] private Student[] private Course[]
courselList; classlList; courselList;
private Faculty faculty;
public void addCourse( public void addCourse(
Course s) { ... } public void addStudent( Course c) { ... }
} Student s) { ... } }

public void setFaculty(
Faculty faculty) { ... }

}

Ficure 10.5 The association relations are implemented using data fields and methods in classes.



Association in Javacode

In Java code, you can implement associations by using data fields and
methods

The relation “a student takes a course” is implemented using:
the agddCourse method in the Student class the

addStuent method in the Course class

The relation “a faculty teaches a course” is implemented using:

the addCourse method in the Faculty class the
setFaculty method in the Course class



Aggregation and Composition

JAggregation is a special form of association that represents an ownership relationship
between two objects.

Aggregation models has-a relationships
The owner object is called an aggregating object, and its class is called an aggregating class
The subject object is called an aggregated object, and its class is called an aggregated

class.

An object can be owned by several other aggregating objects

If an object is exclusively owned by an aggregating object, the relationship between the object
and its aggregating object is referred to as a composition



Examples(Aggregation and Composition)

* For example, “a student has a name” is a composition relationship
between the

e Student class and the Name class.
*whereas “a student has an address” is an aggregation relationship

between the Student class and the Address class, since an address
can be shared by several students



Examples(Aggregation and Composition)

Composition Aggregalion

1 1\‘ 1/’% 1
Name . Student |< > Address |

Ficure 10.6 FEach student has a name and an address.

a filled diamond is attached to an aggregating class (in this case, Student) to denote
the composition relationship with an aggregated class (Name).

an empty diamond is attached to an aggregating class (Student) to denote the
aggregation relationship with an aggregated class (Address).



Aggregation and Composition in Java code

public class Name { public class Student { public class Address {
sttt private Name name;
} private Address address; }
h
Ageregated class Ageregating class Aggregated class

Ficure 10.7 The composition relations are implemented using data fields in classes.



Bamples (Car & Engine)

Car

-color : String
-maxSpeed : int

econstructor»+Car( color : String, maxSpeed : int )
«getters+getColor() : String

«setters+setColor( color : String ) : void
«getters+getMaxSpeed() : int
«setter»+setMaxSpeed( maxSpeed : int ) : void
+carinfo() : void

Composition ( engine just for Engine
onhe car)

+start() : void
+stop() : void




Bxamples (Car & Driver)

Aggregation (shared between more
than one
driver)

Car

-color : String
-maxSpeed ; int

cconstructor»+Car( color : String, maxSpeed : int )
«getters+getColor() : String

«setters+setColor( color : String ) : void
cgetters+getMaxSpeed() : int
«sefters+setMaxSpeed( maxSpeed : int ) : void
+carinfo() : void

Driver




Wrapper dassinjava

provides the mechanism to convert primitive into object and object into
primitive

autoboxing and unboxing feature converts primitive into object and object
into primitive automatically. The automatic conversion of primitive into object
is known as autoboxing and vice-versa unboxing



Wrapper dassin java

The eight classes of java.lang package are known as wrapper classes in java. The list of eight wrapper
classes are given

below

Primitive Type Wrapper class
boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

These classes are called wrapper classes because each wraps or encapsulates a primitive type value
in an object.



Wrapper Casses

= Boolean

» Character  NOTE:

= Short (1) The wrapper classes dQ

= Byte not

= Integer have no-arg constructors.

“Long (Z)Ivrr]: instanlcaesssgfszllre
pper ¢

: EI::::’IG immutable,i.e., their

Internal values cannot be

chancied once the obieots



The Integer and Double Qasses

java.lang.Integer

java.lang.Double

-value:int
+MAX VALUE: int
+MIN VALUE: int

-value: double
+MAX VALUE: double
+MIN VALUE: double

+integer{value: int)
+Integer(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue(}:double
+compareTolo: Integer): int
+to5tring(): String
+valueOf{s: String): Integer

+valueOf|s: String, radix: int): Integer

+parselnt(s: String): int

+parselnt(s: String, radix: int): int

+Double(value: double)
+Double(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue():double
+compareTol{o: Double): int
+to5tring(): String
+valueOf(s: String): Double

+valueOf(s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, radix: int): double

18




+MAX VALUE

+MIN VALUE
Name Range Storage Size
byt 02! integer of the byte type i
yte —2"to 2" —1(-128 to 127) g yic 1yp 8-bit signed
short 2134021 _1 (-32768 to 32767) integer of the short type 16-bit signed
int 23146231 _ 1 (2147483648 to 2147483647) 32-bit signed
long 293 5293 _1 integer of the long type 64-bit signed
(ie.. -9223372036854775808 to 9223372036854775807)
float Negative range: 32-bit IEEE 754
-3.4028235E+38 to -1.4E-45
Positive range:
1.4E-45 to 3.4028235E+38
double Negative range: 64-bit IEEE 754

-1.7976931348623157E+308 to -4.9E-324

Positive range:
4 9E-324 10 1.7976931348623157E+308



Integer 1ntObject = new Integer (1);

(3)

Fquvent | 1veer dntObiect = 2

'

autoboxing



Bamples

Wrapper class Example: Primitive to Wrapper

public class WrapperExamplel<{

public static void main(String args[]){

J/Converting int into Integer

int a=20;

Integer i=Integer.valueOf(a);//converting int inte Integer

Integer j=a;//autoboxing, now compiler will write Integer.valueOf({a) internally

System.out.printin{a+" "+i+" "+j);

I

Output:

20 20 20

20



Bamples

Wrapper class Example: Wrapper to Primitive

public class WrapperExample2{

public static void main(String args[]){
J/Converting Integer to int

Integer a=new Integer{3);

int i=a.intvalue(};//converting Integer to int

int j=a;//unboxing, now compiler will write a.intvalue() intermnally

System.out.printin(a+" "+i+" "+j);

I

Output:

21



Numeric Wrapper (assConstants

Each numerical wrapper class has the constants MAX_VALUE and MIN_VALUE.

MAX_VALUE represents the maximum value of the corresponding primitive data
type. For Byte, Short, Integer, and Long, MIN_VALUE represents the minimum
byte, short, int, and long values.

For Float and Double, MIN_VALUE represents the minimum positive float and
double values.




Conversion Methods

Each numeric wrapper class implements the
abstract methods doubleValue, floatValue,
intValue, longValue, and shortValue, which
are defined in the Number class.

These methods “convert” objects into
primitive type values.



The Static vValueOf Methods

The numeric wrapper classes have a useful
class method, valueOf(String s).

This method creates a new object initialized to
the value represented by the specified string.

For example:
Double doubleObject = Double.valueOf("'12.4");
Integer integerObject = Integer.valueOf("'12");



The Methods forParsing Strings into Numbers

You have used the parselnt method in the
Integer class to parse a numeric string into an
int value and the parseDouble method in the
Double class to parse a numeric string into a
double value.

Each numeric wrapper class has two
overloaded parsing methods to parse a
numeric string into an appropriate numeric
value.



Automatic Conversion Between Primitive
Typesand Wrapper Cass Tvpes

JDK 1.5 allows primitive type and wrapper classes to be converted
automatically. For
example, the following statement in (a) can be simplified as in (b):

Integer([] intArray =J2, 4, 31;

Integer([] intArray = {new Integer(2),|_fawwalent

new Integer(4), new Integer(3)};

(a) New JDK 1.5 bozing (b)




Biginteger and BigDecimal

If you need to compute with very large
integers or high precision floating-
point values, you can use the
Biginteger and BigDecimal classes in

the java.math package.
Both are immutable.



Biginteger and BigDecimal

Biginteger a = new Biglnteger("9223372036854775807");
Biginteger b = new Biglnteger("2");

Biginteger ¢ = a.multiply(b); // 9223372036854775807 * 2
System.out.printin(c);

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal ¢ = a.divide(b);
System.out.printin(c);



