£33 M e 1

BIRZEIT UNIVERSITY

Electrical and Computer Engineering
ENCS2380 — Computer Organization and Microprocessors- Fall 2022
Course Project (1)

Submission is only accepted on Moodle (itc.birzeit.edu)

Deadline: Thursday 19/01/2023 11:55PM.
Background

e Basic Computer Model - Von Neumann Model

Von Neumann computer systems contain three main building blocks: the
central processing unit (CPU), memory, and input/output devices (I/O). These
three components are connected together using the system bus. The most
prominent items within the CPU are the registers: they can be manipulated
directly by a computer program, See figure one:

Function of the Von Neumann Component:

1. Memory: Storage of information (data/program)

b2

Processing Unit: Computation/Processing of Information

i

3. Imput: Means of getting information into the computer. e.g. keyboard, mouse
4. Output: Means of getting information out of the computer. e.g. printer, monitor
5. Control Unit: Makes sure that all the other parts perform their tasks correctly and at the
correct time.
MEMORY
|
MAR
|
|
|
INPUT ; QUTPUT
|
* Keyboard : * Monitor
* Mouse ! * Printer
* Soammer | PROCESSING UNIT “LED
* Card reader | " Digk
- ‘
| TEMP
|
|
|
|
|
|
|

Fmm— =
Fmm—— =

CONTROL UNIT

9 =

Figure 1: Von Neumann computer systems

¢ QGeneral Registers:

The number of registers in a processor unit may vary from one processor to another.
Below are the general registers used by most processor:

1. One of the CPU registers is called as an accumulator AC or 'A' register. It is
the main operand register of the ALU. it is used to store the result generated
by ALU.

2. The data register (MDR) acts as a buffer between the CPU and main memory.
It is used as an input operand register with the accumulator.

3. The instruction register (IR) holds the opcode of the current instruction.

4. The address register (MAR) holds the address of the memory in which the
operand resides.

5. The program counter (PC) holds the address of the next instruction to be
fetched for execution.

Additional addressable registers can be provided for storing operands and
address. This can be viewed as replacing the single accumulator by a set of
registers. If the registers are used for many purpose, the resulting computer is said
to have general register organization. In the case of processor registers, a registers
is selected by the multiplexers that form the buses.

o Communication Between Memorv and Processing Unit

Communication between memory and processing unit consists of
two registers:

e Memory Address Register (MAR).
e Memory Data Register (MDR).

e Toread,

. The address of the location is put in MAR.
. The memory is enabled for a read.
. The value is put in MDR by the memory.

[R

e To write,

1. The address of the location is put in MAR.

2. The data is put in MDR.

3. The Write Enable signal is asserted.

4. The value in MDR is written to the location specified.

e Generic CPU Instruction Cycle
The generic instruction cycle for an unspecified CPU consists of the following stages:

1. Fetch instruction: Read instruction code from address in PC and place in IR. (
IR «— Memory[PC])

2. Decode instruction: Hardware determines what the opcode/function is, and
determines which registers or memory addresses contain the operands.

3. Fetch operands from memory if necessary: If any operands are memory
addresses, initiate memory read cycles to read them into CPU registers. If an
operand is in memory, not a register, then the memory address of the operand
is known as the effective address, or EA for short. The fetching of an operand
can therefore be denoted as Register « Memory[EA]. On today's computers,
CPUs are much faster than memory, so operand fetching usually takes
multiple CPU clock cycles to complete.

4. Execute: Perform the function of the instruction. If arithmetic or logic
instruction, utilize the ALU circuits to carry out the operation on data in
registers. This is the only stage of the instruction cycle that is useful from the
perspective of the end user. Everything else is overhead required to make the
execute stage happen. One of the major goals of CPU design is to eliminate
overhead, and spend a higher percentage of the time in the execute stage.
Details on how this is achieved is a topic for a hardware-focused course in
computer architecture.

5. Store result in memory if necessary: If destination is a memory address,
initiate a memory write cycle to transfer the result from the CPU to memory.
Depending on the situation, the CPU may or may not have to wait until this

Below is an example of a full instruction cyele which uses memory addresses for all
three operands.

mull x, y, product
1. Fetch the instruction code from Memory[PC]

2. Decode the instruction. This reveals that it's a multiply instruction, and that
the operands are memory locations X, y, and product.

3. Fetch x and v from memory.
4. Multiply x and v, storing the result in a CPU register.
5. Save the result from the CPU to memory location product.

o Addressing Modes

The term addressing modes refers to the way in which the operand of an instruction
is specified. Information contained in the instruction code is the value of the
operand or the address of the result/operand. Following are the main addressing
modes that are used on various platforms and architectures.

Example: Simple Accumulator computer implementation:

Our Simple Computer

SIMCOMP has a two byte-
addressable memory with size of
128byte. The memory is
synchronous to the CPU, and the
CPU can read or write a word in [PC]
single clock period. The memory MAR | [MBR K
can only be accessed through the Memory
memory address register (MAR)
and the memory buffer register
(MBR). To read from memory, you
use-

MBR <= Memory[MAR];
And to write to memory, you use:

Memory[MA] <= MBR;

The CPU has three registers -- an accumulator (AC), a program counter
(PC) and an instruction register (IR). In addition, The SIMCOMP has
only three instructions: Load, Store, and Add. The size of all instructions
1s 16 bits: all the instructions are single address instructions and access a
word in memory.

15 1211 0
Opcode Address

Instruction Format

The opcodes are:

e 0011 LOADM //loads the contents of memory location M into the
accumulator.

e 1011 STORE M // stores the contents of the accumulator in memory
location M.

e« (0111 ADDM // adds the contents of memory location M to the contents of
the accumulator.

Procedure:
1- Study,. write and simulate the SIMCOMP Verilog program (see the next page).

2- Add extra instruction (JUMP) to SIMCOMP

JUMP M jumps to location M in memory. Simulate the following program

Address Contents

5 Load 9

[§] Add 10

7 Store IT

8 Jump [§

9 Data 3

10 Data 2

W o -1 o N o DO

10
11
1z
13
14
15
16
17
13
19
20
&l
22
23
24
Z5
26
27
28
29
30
S
3z
33
34
35
36
37

Ernodule SINCOMP (clock, PC,
input clock:
output PC, IR, MER, AC, MAR;
reg [15:0] IR, MBER, AC;
reg [11:0] PC,MAR;
reg [15:0] Memory [0:63];
reg [2:0] state;

parameter load

Einitial hegin
/{ program

Hemory [10] = 16'h3020;
Memory [11] = 16'h7021;
Memory [12] = 16'hBO14;

// data at byte addres
Memory [32] = 16'd7;
Memwory [33] = 16'dS;

//3et the program counter to the start of the

PC = 10; state = 0;

end

Ealways @ (posedge clock) begin
B case [(3tate)
E0: begin

MAR <= PC;

atate=1;

end

IR <=
PC <=
state=2;
end

: begin //Instruction decode

Memory[MAR] ;
PC + 1;
/inext state

4'ho01l, store

IR, MBR, AC, MAR):

= 4'h1011, add=4'b0111;

3g
39
40
gl
42
43
44
45
46
47

: begin // fetch the instruction fromgg

49
50
il
e
53
54
ES
56
57
S8
59
60
61
62
63
64
65

program
MAR <= IR[11:0];
state= 3;

end

: begin // Operand fetch

state =4;

case (IR[15:12])
load : MBR <= Memory[MiE]:
add MER <= Memory[MAR]:
store: MBR<=AC:

endcase

end

: kegin //execute

if (IR[15:12]==4'h7) begin
AC<= AC+MEE;
state =0;

end

else if (IR[15:12] ==
AC <= MER;
state =0; // next

end

else 1f (IR[15:12] ==
Memory[MAR] <= MER;
state = 0;

end

end

state

endcease
end

4'h3) begin

4'hB) begin

Project description:

In this project, we need to upgrade our accumulator computer described and implemented in the example above to a
bit more complicated computer. The memory in this computer system is 16-bit cell memory with size of 128 cells
(i.e. cell width = 16bits). The memory is synchronous to the CPU, and the CPU can read/write one cell in a
single clock cycle. The memory can only be accessed through the memory address register (MAR) and the
memory buffer register (MBR).

The CPU has a program counter (PC) register and an instruction register (IR). This CPU has eight 16-bit
general-purpose registers RO-R7.

The 16-bit instruction format is as follow:

‘ Opcode(3bits) | Dst. Register (3bits) ‘ mode (2bits) | Src. Register/ Memory Address (8bits) ‘

Addressing Modes bits : 00 => Direct memory address
01 => Register
10 => Register Indirect

11 => Constant

The opcodes are:

000 LOAD Ri, operand: loads register Ri with a memory cell of address operand/register content of address operand/
memory cell of address in register operand/or a constant integer operand.

001 STORE Ri, M: Stores the contents of Ri in memory location M. (only mode=00 is supported with store instruction)

010 ADD Ri, operand: Adds the contents of Ri to the operand, and store the result in Ri.

011 SUB Ri, M: subtract the contents operand from Ri and store the result in Ri.

0100 MUL Ri, M: Multiplies the contents of Ri by the operand, and store the result in Ri.

0101 DIV Ri, M: Divides the contents of operand by Ri and store the result in Ri.

Assume data is singed 16-bit integers in the sign-magnitude format as follow:

| Sign (1bit) | Magnitude (15 bits)

Sign =0 => +ve numbers

Sign =1 => -ve numbers

Example:

To add memory cell of address 100 with memory cell pointed by register R1, and store the result in memory
cell of address 102, we use the following program:

Assembly Machine code
Load RO, [10] 000 000 00 00001010
Load R1, 11 000 001 11 00001011
Add RO, [R1] 010 000 10 00000001
Store RO, [12] 001 000 00 00001100
Requirements:

1) a- How many instructions this machine can support?

b- What is the range of unsigned and signed constant numbers this machine supports?

c- What is the length (in bits) of the following registers in this machine?
PC:
IR:
MAR:

MBR:

2) Simulate the following program by converting each instruction to corresponding machine code. Then store the
machine code in memory starting from location 10:

Memory Address | Contents

10 Load RO, [20] (instruction)
11 Load R1,21

12 Add RO, [R1] (instruction)
13 load R1, [22] (instruction)
14 Sub R1, +8 (instruction)
15 Add RO,R1 (instruction)
16 Store RO, [23] (instruction)
20 6 (data)

21 4 (data)

22 13 (data)

23 0 (data)

24 0 (data)

Verify that it works correctly and the also verify that the result stored at address 24 is correct. Attach simulation
waveform and the Verilog source file.

3) Assume A,B,C,D,E and Y are memory cells with addresses 30,31,32,33,34, and 35, respectively.

. — A+Bx(C—-1
Given, Y — D=

a) Write assembly code for implementing the above arithmetic expression?

b) Convert the above assembly instructions into machine code and store them in the memory starting at address
10.

address content
10
11
12
13
14
15
16
17
18
19
20

c) Set PC=10 and simulate the above program. Verify that it works correctly and the result stored at memory
variable Y is correct. Attach simulation waveform and the Verilog source file. Assume A, B, C, D and E have
the values -1, 3, 5, 8, and 4, respectively.

