

First Semester 2022/2023

COMPUTER ORGANIZATION AND MICROPROCESSOR

ARM Assembly Project

Dr. Abualseoud Hanani

Section (2)

QOSSAY RIDA (1211553)

Contents:

>> Arm assembly code for this project

>> Simulation for first operation

 >> Code for convert (Str1)

 >> Code for convert (Str2)

>> Simulation for second operation

 >> Explain the algorithms for the solution

 >> Create unique array from the first text

 >> Find COMMON

>> Simulation for third operation

 >> Code for encryption (Str1)

 >> Code for encryption (Str1)

>> The final value for memory

Arm assembly code for this project:

Simulation for first operation:

>> Code for convert (Str1)

 >> Value of Register before (BL Convert) >> Value of Register after (BL Convert)

 >> Value of memory after (BL Convert)

The value stored in

(TXT1Address)

The value stored in

(TXT1AfterEditAddress)

 >> Code for convert (Str2)

 >> Value of Register before (BL Convert) >> Value of Register after (BL Convert)

 >> Value of memory after (BL Convert)

The value stored in

(NumberTXT1Address)

The value stored in

(TXT2Address)

Simulation for second operation:

>> Explain the algorithms for the solution

We want to find the number of characters common to two different strings (Str1)(Str2), First we want to

 convert all letters to lowercase hence we use (TXT1AfterEdit)(TXT2AfterEdit), Then we create a procedure

 that creates an array containing the characters that make up the first string (TXT1AfterEdit) and the

 pointer for first index in this array (TXT1AfterRemove), for example if (TXT1AfterEdit) equal

 “programming” hence (TXT1AfterRemove) equal “progamin”, Now we compare the (TXT1AfterRemove)

 with (TXT2AfterEdit), Since there is a first loop that passes through the elements of the (TXT1AfterRemove)

 and another loop that passes through the elements of the (TXT2AfterEdit), so if an element of the

 (TXT1AfterRemove) matches an element of (TXT2AfterEdit), the first loop brings the next element and

 compares it with the elements of (TXT2AfterEdit)

(TXT1AfterEdit)= "programming" --> “progamin” “progamin”

(TXT2AfterEdit)= "assembly" "assembly"

The value stored in

(TXT2AfterEditAddress)

The value stored in

(NumberTXT2Address)

COMMON =2

>> Create unique array from the first text

 >> Value of Register before (BL DeleteRepeated) >> Value of Register after (BL DeleteRepeated)

 >> Value of memory after (BL DeleteRepeated)

The value stored in

(TXT1AfterEditAddress)

The value stored in

(TXT1AfterRemoveAddress)

>> Find COMMON

 >> Value of Register before (BL CountCOMMON) >> Value of Register after (BL CountCOMMON)

 >> Value of memory after (BL CountCOMMON)

The value stored in

(TXT1AfterRemoveAddress)

The value stored in

(TXT2AfterEditAddress)

Simulation for third operation

>> Code for encryption (Str1)

 >> Value of Register before (BL Encrypt) >> Value of Register after (BL Encrypt)

 >> Value of memory after (BL Encrypt)

The value stored in

(COMMONAddress)

The value stored in

(TXT1Address)

The value stored in

(ENCRYPT1Address)

>> Code for encryption (Str2)

 >> Value of Register before (BL Encrypt) >> Value of Register after (BL Encrypt)

 >> Value of memory after (BL Encrypt)

The value stored in

(TXT2Address)

The value stored in

(ENCRYPT2Address)

The final value for memory:

Loaded all address to registers then show the value for each address:

>> Code to load all address

>> Value of Register after excite this instruction

>> Value of Memory after excite this instruction

The value stored in

(TXT1Address)

The value stored in

(TXT2Address)

The value stored in

(TXT1AfterEditAddress)

The value stored in

(TXT2AfterEditAddress)

The value stored in

(NumberTXT1Address)

The value stored in

(NumberTXT2Address)

The value stored in

(TXT1AfterRemoveAddress)

The value stored in

(COMMONAddress)

The value stored in

(ENCRYPT1Address)

The value stored in

(ENCRYPT2Address)

