

1 | Page

Contents:

>> Question 1: Superposition Technique(3)
>> The voltage and current on R_3
>> Apply Superposition theorem(4)
>> Compare the results
>> Question 2: Thevenin's Theorem & Maximum Power Transfer (7)
>> The voltage and current on R_L
>> Plot the power of R_L versus the value of R_L
>> Calculate $R_{Thevenin}$ seen by R_L
>> Compare the result for step2 & step3 (9)
>> Thevenin equivalent circuit (10)
>> Compare the result for step1 & step5 (10)
>> Question 3: First Order RC Circuit Analysis (11)
>> Plot $V_i(t) \& V_i(t)$ (11)
>> Find $ au$ (12)
>> Question 4: Second Order RLC Circuit Analysis
>> Plot $V_i(t) \& V_c(t)$ when R = 10K Ω
>> Plot $V_i(t) \& V_c(t)$ when R = 3.162K Ω
>> Plot $V_i(t) \& V_c(t)$ when R = 500 Ω
>> Comment on each result

Question 1: Superposition Technique 1- find the voltage and current on R_3 : Then the voltage on R_3 equal 15.50 – 0 that equal 15.5 volt QOSSAY_RIDA_1211553 R2 R4 15.50V 16.41V 21.14V 1.2K 390 680 **R1**[°] 820 R3 2.2K R5 18V 25V 25.00V 18.00V V1 V2 Then the current across R_3 equal 7.044 mA (down) QOSSAY_RIDA_1211553 **R**4 R2 2.339mA 4.705mA 7.044mA 1.2K 390 R3 < > 2.2K R5 680 820 **R**1 4.705mA 2.339mA 18V 25V 705mA 2.339mA V1 3 | P a g e

2- Apply Superposition theorem: By source V1: The voltage on R_3 equal 6.569 volt The current across R_3 equal 2.986 mA (down) QOSSAY_RIDA_1211553 R2 R4 17.52 6.569\ 4.174\ 1.2K 390 2.2K \$820 R3 **R1 R5** 680 25V 25.00 0VV1 QOSSAY_RIDA_1211553 **R2 R**4 6.139mA 9.125mA 1.2K 2.986mA 390 6.139mA R3 2.2K 820 680[°] **R1 R5** 9.125mA 25V 125mA V1 4 | Page

By Superposition theorem:

Voltage on R_3 = Voltage on R_3 from V₁ + Voltage on R_3 from V₂ Voltage on R_3 = 6.569 + 8.928 = 15.497 volt

Current across R_3 = Current across R_3 from V₁ + Current across R_3 from V₂

Current across $R_3 = 2.986$ (down) + 4.058 (down) = 7.044 mA (down)

3- Compare the results:

Result in Step 1:

Voltage on $R_3 = 15.5$ volt Current across $R_3 = 15.497$ volt

Result in Step 2:

Voltage on $R_3 = 7.044$ mA (down) Current across $R_3 = 7.044$ mA (down)

The results in each step are equal and this proves the validity of the Superposition theorem which states that in a linear circuit, the response (voltage or current) in any branch is equal to the algebraic sum of the responses produced by each independent source acting alone, while all the other sources are turned off. This theorem allows us to simplify complex circuits by breaking them down into smaller, simpler components that can be analyzed and combined to find the overall response of the circuit.

Question 2: Thevenin's Theorem & Maximum Power Transfer

1- find the voltage and current on R_L :

Then the voltage on R_L equal 3.565 – 0 that equal 3.565 volt

Then the current across R_L equal 5.243 mA (down)

2- Plot the power of R_L versus the value of R_L :

The circuit:

We will define R_L as parameter from 100 Ω to 1.5K Ω then plot the power of R_L versus the value of R_L by using DC sweep.

And from the graph we see R_L equal 990.788 Ω when the power be maximum

The graph:

From this simulation V_{os} equal 8.742 – 0 that equal 8.742 volt

Now we can calculate $R_{Thevenin}$:

$$R_{Thevenin} = \frac{V_{os}}{I_{sc}}$$

$$R_{Thevenin} = \frac{8.742}{(8.854 * 10^{-3})}$$

 $R_{Thevenin} = 987.35 \,\Omega$

4- Compare the result for step2 & step3:

Result in Step 1:

 R_L equal 990.788 Ω when the power be maximum Result in Step 2:

 $R_{Thevenin} = 987.35 \,\Omega$

We see:

The $R_{Thevenin}$ is equal to R_L that has a maximum power

5- Thevenin equivalent circuit:

From the simulation for thevenin equivalent circuit we see:

The voltage on R_L equal 3.565 – 0 that equal 3.565 volt The current across R_L equal 5.243 mA (down)

6- Compare the result for step1 & step5:

Result in Step 1:

The voltage on R_L equal 3.565 – 0 that equal 3.565 volt The current across R_L equal 5.243 mA (down)

Result in Step 5:

The voltage on R_L equal 3.565 – 0 that equal 3.565 volt The current across R_L equal 5.243 mA (down)

Result in step1 is equal result in step5 that mean, The Thevenin equivalent circuit is a way of representing a complex electrical network with a single voltage source and single impedance (resistor), to simplify analysis and design.

2- Find τ :

 $V_c(\tau) = 0.63 \varepsilon_0$ $V_c(\tau) = 6.32$

Find τ theoretically:

au = R * C $au = 10 * 10^3 * 0.1 * 10^{-6}$ $au = 10^{-3} sec$

We see τ theoretically is equal τ from the graph of $V_c(t)$

12 | Page

4- comment on each result:

Step2: is it critical_damping

16 | Page