

Contents:

Question 1: Superposition Technique

1- find the voltage and current on R_3 :

2- Apply Superposition theorem: By source V1: The voltage on R_3 equal 6.569 volt The current across R_3 equal 2.986 mA (down) QOSSAY_RIDA_1211553 $R₂$ R₄ $17.52V$ 6.569 4.174V $1.2K$ 390 R₁ ွဲ820 $2.2K$ R₃ R₅ 680 $25V$ 25.00 $0V$ V1 QOSSAY RIDA 1211553 R₄ $R₂$ 9.125mA 6.139mA $1.2K$ 2.986mA 390 6.139mA R₃ $2.2K$ **R1** δ 820 $\frac{2}{5}$ 680 R₅ $9.125mA$ $25V$ 125mA V1 4 | P a g e

By Superposition theorem:

Voltage on R_3 = Voltage on R_3 from V₁ + Voltage on R_3 from V₂ Voltage on $R_3 = 6.569 + 8.928 = 15.497$ volt

Current across R_3 = Current across R_3 from V₁ + Current across R_3 from V₂

Current across R_3 = 2.986 (down) + 4.058 (down) = 7.044 mA (down)

3- Compare the results:

Result in Step 1:

Voltage on R_3 = 15.5 volt Current across R_3 = 15.497 volt

Result in Step 2:

Voltage on R_3 = 7.044 mA (down) Current across R_3 = 7.044 mA (down)

The results in each step are equal and this proves the validity of the Superposition theorem which states that in a linear circuit, the response (voltage or current) in any branch is equal to the algebraic sum of the responses produced by each independent source acting alone, while all the other sources are turned off. This theorem allows us to simplify complex circuits by breaking them down into smaller, simpler components that can be analyzed and combined to find the overall response of the circuit.

Question 2: Thevenin's Theorem & Maximum Power Transfer

1- find the voltage and current on R_L :

Then the voltage on R_L equal 3.565 – 0 that equal 3.565 volt

Then the current across R_L equal 5.243 mA (down)

2- Plot the power of R_L versus the value of R_L :

The circuit:

We will define R_L as parameter from 100 Ω to 1.5K Ω then plot the power of R_L versus the value of R_L by using DC sweep.

And from the graph we see R_L equal 990.788 Ω when the power be maximum

The graph:

From this simulation V_{os} equal 8.742 – 0 that equal 8.742 volt

Now we can calculate $R_{Thevenin}$:

$$
R_{Thevenin} = \frac{V_{os}}{I_{sc}}
$$

$$
R_{Thevenin} = \frac{8.742}{(8.854 \times 10^{-3})}
$$

 $R_{Thevenin}$ = 987.35 Ω

4- Compare the result for step2 & step3:

Result in Step 1:

 R_L equal 990.788 Ω when the power be maximum Result in Step 2:

 $R_{Thevenin}$ = 987.35 Ω

We see:

The $R_{Thevenin}$ is equal to R_L that has a maximum power

5- Thevenin equivalent circuit:

From the simulation for thevenin equivalent circuit we see:

The voltage on R_L equal 3.565 – 0 that equal 3.565 volt The current across R_L equal 5.243 mA (down)

6- Compare the result for step1 & step5:

Result in Step 1:

The voltage on R_L equal 3.565 – 0 that equal 3.565 volt The current across R_L equal 5.243 mA (down)

Result in Step 5:

The voltage on R_L equal 3.565 – 0 that equal 3.565 volt The current across R_L equal 5.243 mA (down)

Result in step1 is equal result in step5 that mean, The Thevenin equivalent circuit is a way of representing a complex electrical network with a single voltage source and single impedance (resistor), to simplify analysis and design.

2- Find τ :

 $V_c(\tau) =$ $V_c(\tau) =$

Find τ theoretically:

 $\iota - \kappa * c$ $V(\mathcal{A})$ is a set of \mathcal{A} in the set of \mathcal{A} is a set of \mathcal{A} is a set of \mathcal{A} $\tau = R * C$ $\tau = 10 * 10^3 *$ $\tau = 10^{-3} s$

We see τ theoretically is equal τ from the graph of $V_c(t)$

12 | P a g e

4- comment on each result:

