
Physics Department

Physics 112

Report 2

Done by :Rayan Ghnimat

"The world is a book and those who do not travel read only one page."

"وَقُل رَّبِّ زِدْنِي عِلْمًا"

Physics Department

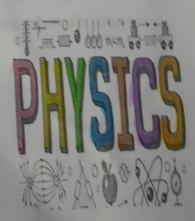
Physics 112

Experiment No.2

Source Internal Resistance, Loading Problems and Circuit Impedance
Matching.

Student's Name: Rayan Ahmad Ghnimat.

Student's No.:1211073.

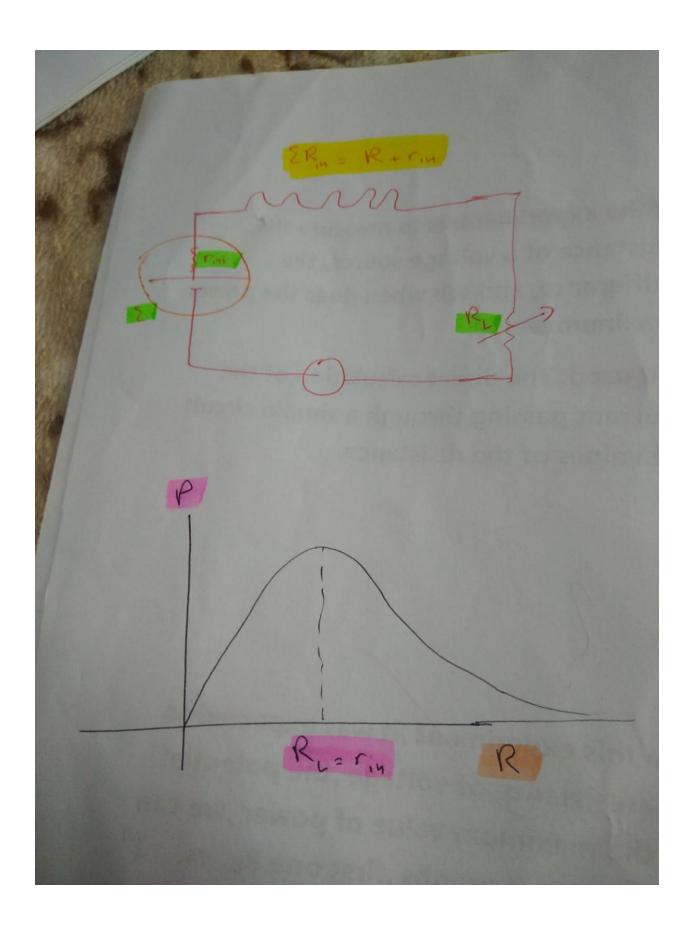

Partner's Name :Layan , Aya.

Partner's No .: 12111439, 1210768.

Section: 6.

Date: 16/11/2022.

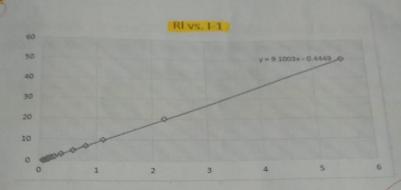
Instructor: Dr. Khalid Eid.


· Abstract:

- 1. The aim of the experiment: is to measure the internal resistance of a voltage source, the potential difference, and see when does the power reach its maximum value.
- 2. The method used: The direct calculation of the electrical current passing through a simple circuit at different values of the resistance.

3. Main results:

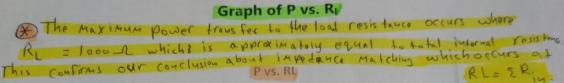
Fin = 500 A

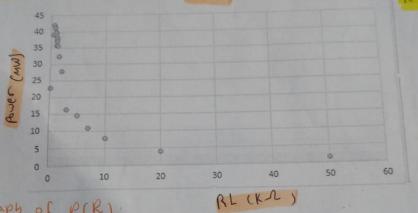

Introduction: In this experiment, it was expected to find the internal resistance of voltage, the potential difference, and the maximum value of power, we can find them by ghraphing 2 graphs, first one R_L vs. Γ^1 and the second one is expected to have ghraph where maximum value of power is known.

Data:			-21 -012	D. T	R _L (mW)	
RI(KU)	I(mA)	I-1(mA)-1	I ² (mA) ²		22.74	
0.1	15.08	0.07	227.41			
0.3	11.41	0.08	130.19	39	.06	
	9.17	0.11	84.09	42	.05	
0.5			58.83 41.18		1.18	
0.7	7.67	0.13	20		9.87	
0.8	7.09	0.14	43.0			
0.85	6.84	0.15	46.79		9.77	
0.9	6.60	0.15	39.69 3		35.72	
0.95	6.37	0.16	40.58		38.55	
1.0	6.12	0.16	37.45		37.45	
1.05	6.01	0.17	36.12		37.93	
1.1	5.80	0.17	33.64		37.0	
2	5.45	0.18	29.7		35.64	
5	4.64	0.22	21.5	3	32.30	
.0	3.72	0.27	13.8	3	27.66	
	2.66	0.38	5.43		16.29	
.0					14.45	
.0	1.70	0.59	2.0			

Data Analysis: Linear Graph of R, vs. I1.

RI(Ke)




T1(mA)

-Calculations of Graph 1:

Slope from graph = 4.1 $E = 1/s \log Pe = 1/4.1 \approx 0.11 \text{ Volt.}$ $r_{in} = R_{in} - R \text{ (where } R \text{ is } 1 \text{ K.A. } \text{ making } \text{ it } 1000)$. $r_{in} = (0.5 \times 1000) - 1000 = -500$ $r_{in} = 500 \text{ A.}$

(The graph was done without connecting the dots due to the fact that excel does not have a proper trendline for it).

From graph of P(R);

Max value for poccures at RL: 1000-2 = Pmx = 37.45

Conclusion:

After conducting the experiment, it was found that the RL vs. I-1 graph was in fact a linear graph, therefore, I measured the slope of the graph using $1/\varepsilon$. In addition to this, it was also found that the P vs. RL graph was a non-linear graph with the maximum value of the power $(\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$