

Physics Department

Physics 112

Report 8 *Done by :Rayan Ghnimat*

"The world is a book and those who do not travel read only one page."

BIRZEIT UNIVERSITY

BIRZEIT UNIVERSITY

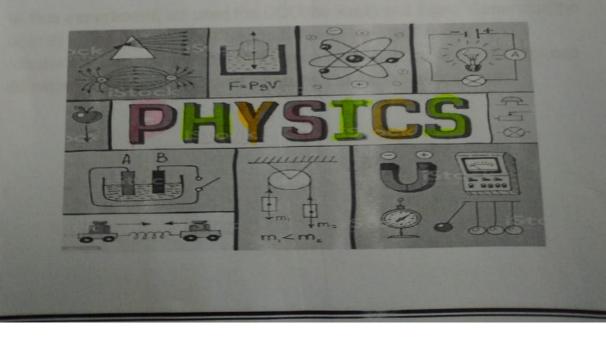
Physics Department

Physics 112

Experiment Number 8:

IMPEDANCE AND REACTANCE

المحمد العرب وراجع إلى ويندى الحق وو ويت من الملك المول الفي المعام الوقو اللايم المعلما "

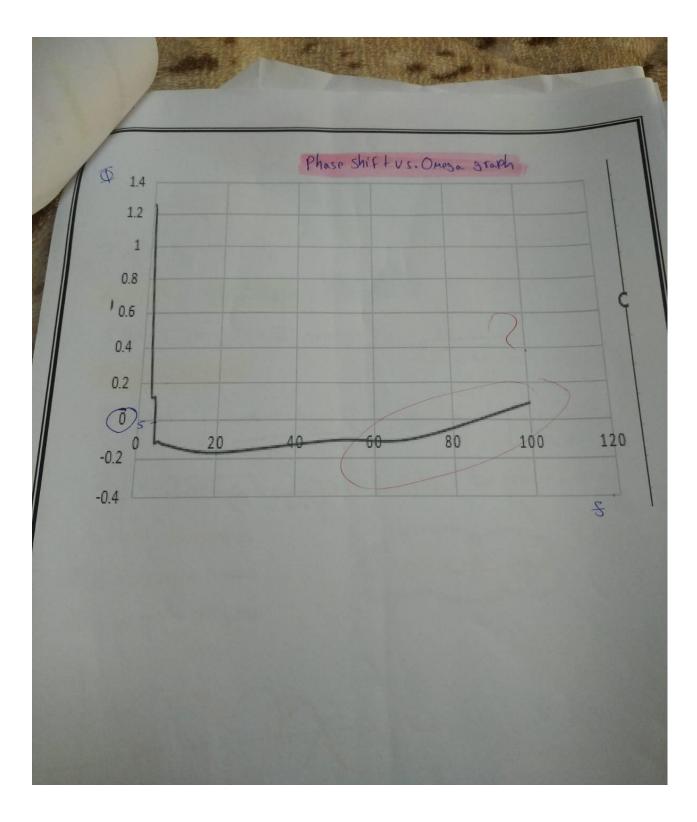

Student's name: Rayan Ghnimat.

Partner's name: Layan,Aya.

Student's no: 1211073. Partner's no. : 1211439

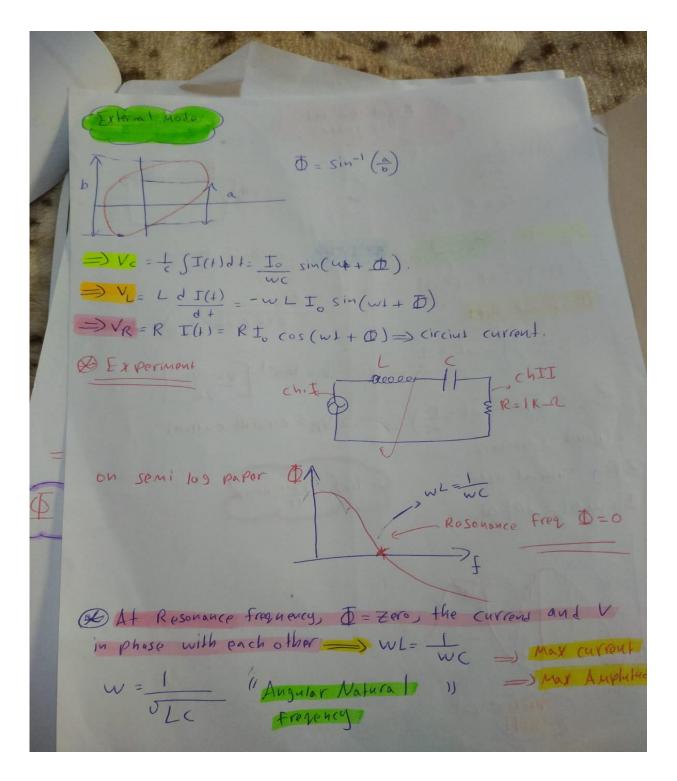
Section: 6

Instructor: Khalid eid.


Abstract:

• The aim of the experiment: is to show the difference and the similarities between V_r , V_c and V_l graphs, and to measure the phase shift between each of them and the driving voltage.

• The method used: by using the time divisions on the CRO screen within the internal mode, and intercepts within the external mode, to analyze the graphs of our circuit which is powered by the signal generator with AC current.


INTRODUCTION:

In this experiment, we used the DCO(the input) and Signal Generator(the output) to find the phase difference between V_{in} , input voltage, and V_r , resistor voltage,. in addition to determine the frequency wherein the phase difference is equal to zero, and compare it to the theoretical value.

$$F(t) = \frac{F(t)}{2e_{t}}$$

$$F(t) = \frac{F(t)}{2e_{$$

$$\begin{aligned} f &= \int_{2\pi} f = \int_$$

EXPERIMENT 8

Impedance and Reactance

Student's Name: Rugan Juni 40		Student's No.: 1711 8/3
Parmer's Name: Lastan, Aspa		Partner's No.: 1711 4 2 4
Instructors Name: Kha lid eid		Section No.: 6
Dute: 4/1/20/3		R=1 KO
$C = 0.1 \mu F$	L= 10 mH	

		Q=2nf	$d\mathbf{p} = \omega \Delta t$
Frequency (KHz)	Δt		2.6×10=1
0.1	2.5 Ms	628	1. 43× 10-3
0.3	FEOMS	1.884	and an other statement of the
0.5	400 Ms	3140	1 + 756
0.7	280 Ms	4396	1.00
1.0	100 MS	6780	
3.0	6.4Ms	18 840	0.175
4.0	4. 3Ms	25170	0 . 120
4.5	4.4.45	28 260	- 0.124
4.8		30144	- 0.170
	445	31 400	-0.119
5.0	3.8 Ms.	3 2 6 5 6	-0.117
5.2	3.645		-0.116
5.5	3.2 MS	34 540	
7	3 Ms	43 960	
20	1. I Ms	125600	-0.175
501.00	360 Ms	31400	- 6.113
70.0		439 600	-6.1055
	240 Ms	62800	-7
100.0	Idolls	6760	

Conclusion:

We notice that the phase shift becomes zero when the frequency becomes 0 KHz. and we notice that the input voltage in phase with the output voltage when using a resistor. And there is a phase shift when using both inductor and capacitor.,We can notice the effect of the errors in the semi-log plot of Phase Shift vs. Frequency.

But generally, we got good results.