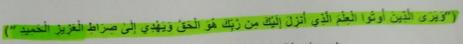

Physics Department

Physics 112

Report 9

Done by :Rayan Ghnimat

"The world is a book and those who do not travel read only one page."

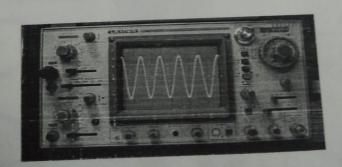


Physics Department
Physics 112

Experiment No.

RESONANCE

Student's Name: Rayan Ghnimat .


Student's No:1211073.

Partner's Name: Layan, Aya.

Partners' No.: 1211439.

Section No.: 6.

Instructor: Khaled Eid.

· Abstract

The aim of the experiment: Is to find out the resonance frequency of the RLC circuit.

The method used: by measuring the characteristics of the LRC circuit, powered by a signal generator, at different frequencies.

• Introduction:

At this experiment, we used DCO and Signal Generator to identify the resonance omega and quality factor, using a I vs. ω graph. It aims to find the quality factor at resonance for two different values of R by using specific equations whose parameters we get using the graph .

using specific equations whose parameters we get using the graph.

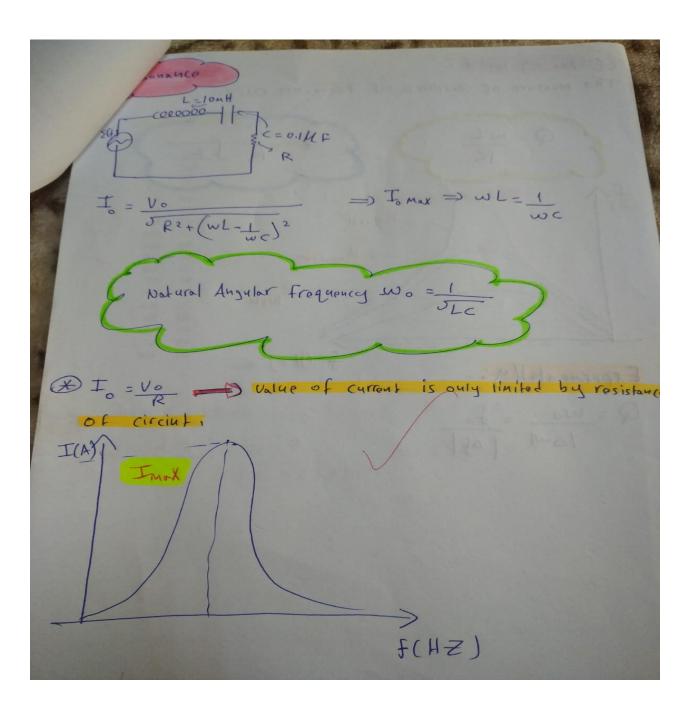
(calculations) =
$$W = \frac{1}{\sqrt{(10x10^{-5})} \times (0.1 \times 10^{-6})}$$

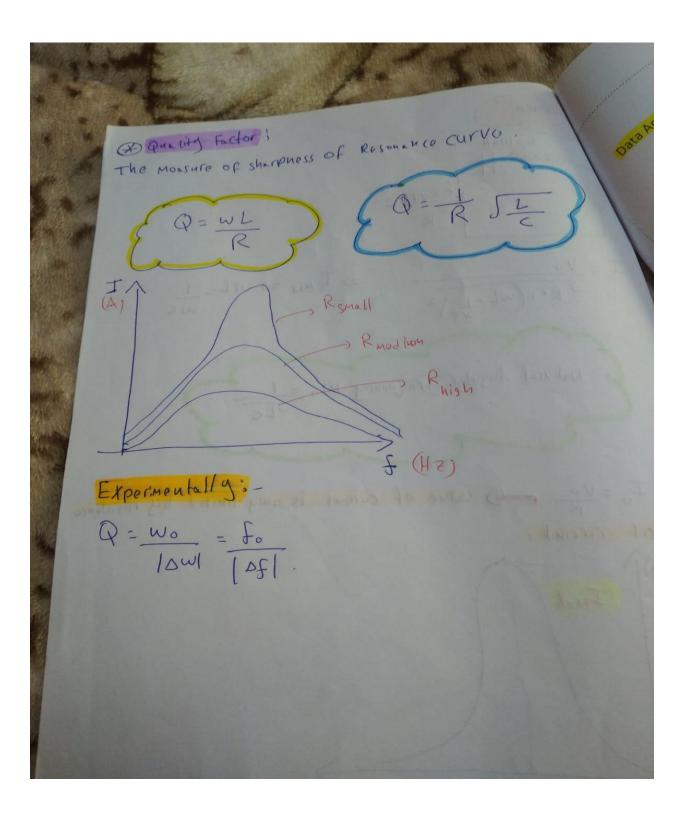
= 316 22.78 HZ.

Q = R J = - 1000 J 10×103

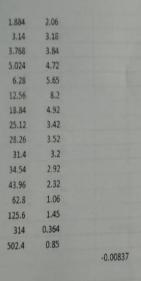
Resonance

Student's Name: Rayan ghuinal Student's No.: 1711073

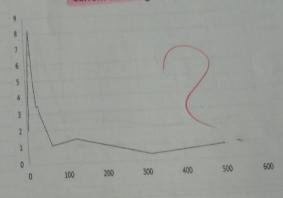

Partner's Name: Layan Aya Partner's No.: 1210768, 1711073


Instructors Name: Khalik Fik Section No.: 6

Vpp = 21.20

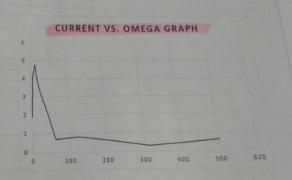

Vpp = 10.60

	$R = 1K\Omega$		$R = 2K\Omega$	
f(kHz)	$V_0(volt)$	$I_0(mA)$	$V_0(volt)$	$I_0(mA)$
0.2	2.6	2.6	9,3	4.65
0.3	2.06	2.06	3.8	1.9
0.5	3.18	2 .18	5.65	2.825
0.6	3-84	3.84	6,2	3.1
0.8	4.72	4-72	7.3	3.65
1.0	5.65	5-65	8.3	4-15
2.0	8-2	8-2	9.6	4.8
.0	4.92	4.92	7.7	3.85
0	3.42	3,42	6.55	3. 275
5	3-52	3.52	8.1	3.05
	3-20	3-20	s. 7	2.85
	2.42	2.92	5-3	2,65
	2.32	2.32	4.32	2.18
	1.06	1,06	1.33	0.665
	1.45	1.45	1.58	0.79
19 19 19 19	0.364	0.364	6.8	6.3
	0.85	0.85	1.15	0,57



Data Analysis:

Current vs. Omega Graph



when
$$R = 1 \text{ K-} \Omega \implies \text{Jo max} = 8.2 \text{ m A}$$
.

$$Q = \frac{\text{Wo}}{\text{DW}} = \frac{2 \times 10^3}{(3 - 0.8) \times 10^2} \implies Q = 0.4$$

pata Analysis:

1.884	1.9	
3.14	2.825	
3.768	3.1	
5.024	3.65	
6.28	4.15	
12.56	4.8	
18.84	3.85	
25.12	3.275	
28.26	3.05	
31.4	2.85	
34.54	2.65	
43.96	2.1	
62.8	0.665	
125.6	0.79	
314	0.3	
502.4	0.575	
		-0.00677

when
$$R = 2K-\Lambda = 3I_0 \text{ Max} = 4.8 \text{ MA}$$

$$Q = 1 \times 10^3 = \frac{1}{3.2} = 0.3125 \approx 0.3$$

$$\left(\frac{4 - 0.8}{2} \right) \times 10^3 = \frac{3.2}{3.2} = 0.3125 \approx 0.3$$

Conclusion:

We found that current in an RLC circuit has reaches a maximum when the driving voltage frequency is equal to the resonant frequency. We can also conclude that the greater the resistance in an RLC circuit, the small the quality factor.

